REFERENCES
- [1] S.M. Benson, F.M. Orr, Carbon dioxide capture and storage, MRS Bull., 33 (2008) 303-305.
- [2] J. Underschultz, K. Dodds, K. Michael, S. Sharma, T. Wall, S. Whittaker, Carbon capture and storage, (2017).
- [3] B. Belaissaoui, Y. Le Moullec, D. Willson, E. Favre, Hybrid membrane cryogenic process for post-combustion CO2 capture, J. Membrane Sci., 415 (2012) 424-434.
- [4] T.C. Merkel, H. Lin, X. Wei, R. Baker, Power plant post-combustion carbon dioxide capture: An opportunity for membranes, J. Membrane Sci., 359 (2010) 126-139.
- [5] S.-Y. Lee, S.-J. Park, A review on solid adsorbents for carbon dioxide capture, J. Ind. Eng. Chem., 23 (2015) 1-11.
- [6] N. El Hadri, D.V. Quang, E.L. Goetheer, M.R.A. Zahra, Aqueous amine solution characterization for post-combustion CO2 capture process, Appl. Energy., 185 (2017) 1433-1449.
- [7] J. de Riva, J. Suarez-Reyes, D. Moreno, I. Díaz, V. Ferro, J. Palomar, Ionic liquids for post-combustion CO2 capture by physical absorption: Thermodynamic, kinetic and process analysis, International Journal of Greenhouse Gas Control, 61 (2017) 61-70.
- [8] C. Song, Q. Liu, N. Ji, S. Deng, J. Zhao, Y. Li, Y. Kitamura, Reducing the energy consumption of membrane-cryogenic hybrid CO2 capture by process optimization, Energy, 124 (2017) 29-39.
- [9] M. Onischak, D. Gidaspow, Kinetics of the reaction of CO2 with solid K2CO3, Proc. of 73rd National AIChE Meeting, Minneapolis, MN, 1972.
- [10] Y. Liang, D. Harrison, R. Gupta, D. Green, W. McMichael, Carbon dioxide capture using dry sodium-based sorbents, Energy & Fuels, 18 (2004) 569-575.
- [11] J.B. Lee, T.H. Eom, B.S. Oh, J.-I. Baek, J. Ryu, W.S. Jeon, Y.H. Wi, C.K. Ryu, CO2 capture from flue gas using potassium-based dry regenerable sorbents, Energy Procedia, 4 (2011) 1494-1499.
- [12] T.O. Nelson, L.J. Coleman, D.A. Green, R.P. Gupta, The dry carbonate process: carbon dioxide recovery from power plant flue gas, Energy Procedia, 1 (2009) 1305-1311.
- [13] H. Hayashi, J. Taniuchi, N. Furuyashiki, S. Sugiyama, S. Hirano, N. Shigemoto, T. Nonaka, Efficient recovery of carbon dioxide from flue gases of coal-fired power plants by cyclic fixed-bed operations over K2CO3-on-carbon, Industrial & engineering chemistry research, 37 (1998) 185-191.
- [14] S.C. Lee, B.Y. Choi, C.K. Ryu, Y.S. Ahn, T.J. Lee, J.C. Kim, The effect of water on the activation and the CO2 capture capacities of alkali metal-based sorbents, Korean J. Chem. Eng., 23 (2006) 374-379.
- [15] S.C. Lee, J.C. Kim, Dry potassium-based sorbents for CO2 capture, Catalysis Surveys from Asia, 11 (2007) 171-185.
- [16] B. Chalermsinsuwan, P. Kuchonthara, P. Piumsomboon, CFD modeling of tapered circulating fluidized bed reactor risers: hydrodynamic descriptions and chemical reaction responses, Chemical Engineering and Processing: Process Intensification, 49 (2010) 1144-1160.
- [17] Y. Seo, S.-H. Jo, C.K. Ryu, C.-K. Yi, Effects of water vapor pretreatment time and reaction temperature on CO2 capture characteristics of a sodium-based solid sorbent in a bubbling fluidized-bed reactor, Chemosphere, 69 (2007) 712-718.
- [18] P. Chaiwang, B. Chalermsinsuwan, P. Piumsomboon, Thermogravimetric analysis and chemical kinetics for regeneration of sodium and potassium carbonate solid sorbents, Chem. Eng. Commun., 203 (2016) 581-588.
- [19] R. Veneman, Z. Li, J. Hogendoorn, S.R. Kersten, D.W.F. Brilman, Continuous CO2 capture in a circulating fluidized bed using supported amine sorbents, Chemical engineering journal, 207 (2012) 18-26.
- [20] F. Fang, Z.-s. Li, N.-s. Cai, Continuous CO2 capture from flue gases using a dual fluidized bed reactor with calcium-based sorbent, Industrial & Engineering Chemistry Research, 48 (2009) 11140-11147.
- [21] S. Sengupta, V. Amte, A.K. Das, M. Yadav, S. Mandal, S. Nerivetla, H. Bhunia, Circulating Fluid-Bed Studies for CO2 Capture from Flue Gas using K2CO3/Al2O3 Adsorbent, Energ. Fuel., 32 (2018) 8594-8604.
- [22] C. Zhao, X. Chen, C. Zhao, Y. Liu, Carbonation and hydration characteristics of dry potassium-based sorbents for CO2 capture, Energy & Fuels, 23 (2009) 1766-1769.
- [23] S.C. Lee, B.Y. Choi, T.J. Lee, C.K. Ryu, Y.S. Ahn, J.C. Kim, CO2 absorption and regeneration of alkali metal-based solid sorbents, Catalysis Today, 111 (2006) 385-390.
- [24] K. Ropelato, H.F. Meier, M.A. Cremasco, CFD study of gas–solid behavior in downer reactors: an Eulerian–Eulerian approach, Powder Technol., 154 (2005) 179-184.
- [25] Y. Cheng, W. Zhang, G. Guan, C. Fushimi, A. Tsutsumi, C.-H. Wang, Numerical studies of solid–solid mixing behaviors in a downer reactor for coal pyrolysis, Powder Technol., 253 (2014) 722-732.
- [26] B. Chalermsinsuwan, T. Chanchuey, W. Buakhao, D. Gidaspow, P. Piumsomboon, Computational fluid dynamics of circulating fluidized bed downer: Study of modeling parameters and system hydrodynamic characteristics, Chem. Eng. J., 189 (2012) 314-335.
- [27] J. Cardoso, V. Silva, D. Eusébio, P. Brito, R.M. Boloy, L. Tarelho, J.L. Silveira, Comparative 2D and 3D analysis on the hydrodynamics behaviour during biomass gasification in a pilot-scale fluidized bed reactor, Renewable Energy, 131 (2019) 713-729.
- [28] E.-U. Hartge, L. Ratschow, R. Wischnewski, J. Werther, CFD-simulation of a circulating fluidized bed riser, Particuology, 7 (2009) 283-296.
- [29] D. Gidaspow, Multiphase flow and fluidization: continuum and kinetic theory descriptions, Academic press1994.
- [30] T. Thummakul, D. Gidaspow, P. Piumsomboon, B. Chalermsinsuwan, CFD simulation of CO2 sorption on K2CO3 solid sorbent in novel high flux circulating-turbulent fluidized bed riser: Parametric statistical experimental design study, Appl. Energy., 190 (2017) 122-134.
- [31] M. Nouri, G. Rahpaima, M.M. Nejad, M. Imani, Computational simulation of CO2 capture process in a fluidized-bed reactor, Computers & Chemical Engineering, 108 (2018) 1-10.
- [32] C.-K. Yi, S.-H. Jo, Y. Seo, J.-B. Lee, C.-K. Ryu, Continuous operation of the potassium-based dry sorbent CO2 capture process with two fluidized-bed reactors, International Journal of Greenhouse Gas Control, 1 (2007) 31-36.
- [33] S.-W. Park, D.-H. Sung, B.-S. Choi, J.-W. Lee, H. Kumazawa, Carbonation kinetics of potassium carbonate by carbon dioxide, Journal of industrial and engineering chemistry, 12 (2006) 522-530.
- [34] S. Kongkitisupchai, D. Gidaspow, Carbon dioxide capture using solid sorbents in a fluidized bed with reduced pressure regeneration in a downer, AIChE J., 59 (2013) 4519-4537.
- [35] Y. Wu, X. Chen, W. Dong, C. Zhao, Z. Zhang, D. Liu, C. Liang, K2CO3/Al2O3 for capturing CO2 in flue gas from power plants. Part 5: carbonation and failure behavior of K2CO3/Al2O3 in the continuous CO2 sorption–desorption system, Energ. Fuel., 27 (2013) 4804-4809.
- [36] S. Boonprasop, S. Sangteerasintop, B. Chalermsinsuwan, P. Piumsomboon, Optimum operating parameters of CO2 sorption in turbulent fluidized bed regime using potassium carbonate supported on gamma alumina solid sorbent, RSC advances, 8 (2018) 39678-39690.
- [37] S. Boonprasop, B. Chalermsinsuwan, P. Piumsomboon, CO2 sorption and sorbent depressurized regeneration in circulating-turbulent fluidized bed regime, Journal of Environmental Chemical Engineering, 7 (2019) 102928.