REFERENCES
- [1]Casson, (1959): A flow equation for the pigment oil suspensions of the printing ink type, in: Rheology of Disperse Systems, Pergamon, NewYork, 84-102.
- [2]Mahanta, S. Shaw, (2015): 3D Casson fluid flow past a porous linearly stretching sheet with convective boundary condition Alexandria Engineering Journal, 54 (3) 653–659.
- [3]Hartmann, (1937): Hg-dynamics I theory of the laminar flow of an electrically conductive liquid in a homogenous magnetic field, Det Kal. Danske Videnskabernes selskab, Mathematisk-fysiske Meddeleser, 15 1-27.
- [4]Nadeem, R. U. Haq, N. S. Akbar, Z.H. Khan, (2013): MHD three-dimensional Casson fluid flow past a porous linearly stretching sheet, Alexandria Engineering Journal,52 577–582.
- [5]R. Kataria, H. R. Patel, (2015): Effect of magnetic field on unsteady natural convective flow of a micropolar fluid between two vertical walls , Ain Shams Engineering Journal, doi. 10.1016/j.asej.2015.08.013.
- [6]M. Rashidi, E. Erfani, (2012): Analytical Method for Solving Steady MHD Convective and Slip Flow due to a Rotating Disk with Viscous Dissipation and Ohmic Heating, Engineering Computations 29 (6) 562–579.
- [7]Hatami and H. Safari, (2016): "Effect of inside heated cylinder on the natural convection heat transfer of nanofluids in a wavy-wall enclosure." International Journal of Heat and Mass Transfer 103 1053-1057.
- [8]Hatami, D. Song, and D. Jing, (2016): "Optimization of a circular-wavy cavity filled by nanofluid under the natural convection heat transfer condition." International Journal of Heat and Mass Transfer 98 758-767.
- [9]Hatami, M. Sheikholeslami, M. Hosseini, D. D. Ganji, (2014): Analytical investigation of MHD nanofluid flow in non-parallel walls, Journal of Molecular Liquids 194 251–259.
- [10]Sheikholeslami, H. F. Oztop, MHD free convection of nanofluid in a cavity with sinusoidal walls by using CVFEM, Chinese Journal of Physics, 55 (2017) 2291-2304.
- [11]Selimefendigil, H. F. Öztop, conjugate natural convection in a nanofluid filled partitioned horizontal annulus formed by two isothermal cylinder surfaces under magnetic field, International Journal of Heat and Mass Transfer, 108 (2017) 156–171
- [12]Selimefendigil, Hakan F. Öztopb, A. J. Chamkhac, Fluid–structure-magnetic field interaction in a nanofluid filled lid-driven cavity with flexible side wall, European Journal of Mechanics B/Fluids, 61 (2017) 77–85.
- [13]H M Sedighi, K H Shirazi, J Zare, An analytic solution of transversal oscillation of quintic non-linear beam with homotopy analysis method, International Journal of Non-Linear Mechanics 47 (2012), 777-784
- [14]H M Sedighi, K H Shirazi, Using homotopy analysis method to determine profile for disk cam by means of optimization of dissipated energy, International Review of Mechanical Engineering 5 (2018), 941-946
- [15]H M Sedighi, F Daneshmand, Nonlinear transversely vibrating beams by the homotopy perturbation method with an auxiliary term, Journal of Applied and Computational Mechanics 1 (2014), 1-9
- [16]A Reza, H M Sedighi, Nonlinear vertical vibration of tension leg platforms with homotopy analysis method, Advances in Applied Mathematics and Mechanics 7 (2015), 357-368
- [17]U Filobello-Nino, H Vazquez-Leal, MM Rashidi, Hamid M Sedighi, A Perez-Sesma, M Sandoval-Hernandez, A Sarmiento-Reyes, AD Contreras-Hernandez, D Pereyra-Diaz, C Hoyos-Reyes, VM Jimenez-Fernandez, J Huerta-Chua, F Castro-Gonzalez, JR Laguna-Camacho, Laplace transform homotopy perturbation method for the approximation of variational problems, SpringerPlus 5 (2016), 276.
- [18]R. Kataria, A. S. Mittal, (2015): Mathematical model for velocity and temperature of gravity-driven convective optically thick nanofluid flow past an oscillating vertical plate in presence of magnetic field and radiation. Journal of Nigerian Mathematical Society, 34 303–317.
- [19]R. Kataria, A. S. Mittal, (2017): Velocity, mass and temperature analysis of gravity-driven convection nanofluid flow past an oscillating vertical plate in presence of magnetic field in a porous medium, Applied Thermal Engineering, 110 864-874.
- [20]Freidoonimehr, M. M. Rashidi, S. Mahmud, (2015): Unsteady MHD free convective flow past a permeable stretching vertical surface in a nano-fluid, International Journal of Thermal Sciences, 87 136-145.
- [21]Sheikholeslami, M. M. Bhatti, (2017): Active method for nanofluid heat transfer enhancement by means of EHD, International Journal of Heat and Mass Transfer 109 115–122.
- [22]Sheikholeslami, S.A. Shehzad, (2017): Thermal radiation of ferrofluid in existence of Lorentz forces considering variable viscosity, International Journal of Heat and Mass Transfer 109 82–92.
- [23]M. Rashidi, M. Ali, N. Freidoonimehr, B. Rostami, M. Anwar Hossain, (2014): Mixed convective heat transfer for MHD viscoelastic fluid flow over a porous wedge with thermal radiation, Advances in Mechanical Engineering, Volume 2014 Article number 735939.
- [24]I. Khan, S. Qayyum, T. Hayat, M. Waqas, M. I. Khan, A. Alsaedi, Entropy generation minimization and binary chemical reaction with Arrhenius activation energy in MHD radiative flow of nanomaterial, doi: 10.1016/j.molliq.2018.03.049
- [25]I. Khan, M. I. Khan, M. Waqas, T. Hayat, A. Alsaedi, Chemically reactive flow of Maxwell liquid due to variable thicked surface, International Communications in Heat and Mass Transfer, 86 (2017) 231–238.
- [26]A. Shehzad, T. Hayat, A. Alsaedi, (2016): Three-Dimensional MHD Flow of Casson Fluid in Porous Medium with Heat Generation, Journal of Applied Fluid Mechanics, 9 215-223.
- [27]M. Hussain, J. Jain, G.S. Seth, M.M. Rashidi, (2017): Free convective heat transfers with hall effects, heat absorption and chemical reaction over an accelerated moving plate in a rotating system, Journal of Magnetism and Magnetic Materials, 422 112–123
- [28]Nandkeolyar, M. Das, P. Sibanda, (2013): Exact solutions of unsteady MHD free convection in a heat absorbing fluid flow past a flat plate with ramped wall temperature, Boundary Value Problems, 2013:247
- [29]R. Kataria, H. R. Patel, (2016): Heat and Mass Transfer in MHD Second Grade Fluid Flow with Ramped Wall Temperature through Porous Medium, Mathematics Today, 32 67-83
- [30]R. Kataria, H. R. Patel, (2016): Effect of thermo-diffusion and parabolic motion on MHD Second grade fluid flow with ramped wall temperature and ramped surface concentration, Alexandria Engineering Journal, 10.1016/j.aej.2016.11.014
- [31]S. Seth, S. M. Hussain, S. Sarkar, (2015): Hydromagnetic natural convection flow with heat and mass transfer of a chemically reacting and heat Absorbing fluid past an accelerated moving vertical plate with ramped temperature and ramped surface Concentration through a porous medium, Journal of the Egyptian Mathematical Society 23 197–207
- [32]Kumaran, N. Sandeep, (2017): Thermophoresis and Brownian moment effects on parabolic flow of MHD Casson and Williamson fluids with cross diffusion, Journal of Molecular Liquids, 233 262–269.
- [33]Sandeep, O. K. Koriko, I. L. Animasaun, (2016): Modified kinematic viscosity model for 3D-Casson fluid flow within boundary layer formed on a surface at absolute zero, Journal of Molecular Liquids, 221 1197–1206
- [34]R. Kataria, H. R. Patel, (2016): Radiation and chemical reaction effects on MHD Casson fluid flow past an oscillating vertical plate embedded in porous medium, Alexandria Engineering Journal, 55 583–595
- [35]R. Kataria, H. R. Patel, (2016): soret and heat generation effects on MHD Casson fluid flow past an oscillating vertical plate embedded through porous medium, Alexandria Engineering Journal 55 2125–2137
- [36]K. Anantha, R. J. V. Ramana, N. Sandeep, V. Sugunamma, (2016): Dual Solutions for Thermo Diffusion and Diffusion Thermo Effects on 3D MHD Casson Fluid Flow over a Stretching Surface, R.J.Pharmacy and tech. 9(8), 1187-1194
- [37]Sulochana, S. S. Payad, N. Sandeep, (2016): Non uniform heat source or sink effect on the flow of 3D Casson fluid in presence of Soret and thermal radiation, Int.J.Eng. Resaech in Afrika, 20 112-129.
- [38]I. Khan, M. Waqas, T. Hayat, A. Alsaedi, (2017): A comparative study of Casson fluid with homogeneous-heterogeneous reactions, Journal of Colloid and Interface Science 85-90
- [39]Sheikholeslami, T. Hayat, A. Alsaedi, (2017): Numerical study for external magnetic source influence on water based nanofluid convective heat transfer, International Journal of Heat and Mass Transfer, 745-755.
- [40]K. Nayak, G. C. Dash, L. P. Singh, (2014): Steady MHD flow and heat transfer of a third grade fluid in wire coating analysis with temperature dependent viscosity, Int. J. Heat Mass Transfer, 79 (2014) 1087–1095.
- [41]Hayat, T. Muhammad, A. Qayyum, A. Alsaedi, M. Mustafa, (2016): On squeezing flow of nanofluid in the presence of magnetic field effects. J. Mol. Liquids, 179-185.
- [42]Hayat, M. Shafique, A. Tanveer, A. Alsaedi, (2016): Magnetohydrodynamic effects on peristaltic flow of hyperbolic tangent nanofluid with slip conditions and Joule heating in an inclined channel, Int. J. Heat Mass Transfer, 102 54–63.
- [43]R. Kataria, A. S. Mittal, (2017): Analysis of Casson Nanofluid Flow in Presence of Magnetic Field and Radiation, Mathematics Today, 33(1), 99 - 120.
- [44]Rosseland, (1931): Astrophysik und atom-theoretische Grundlagen. Berlin: Springer-Verlag.
- [45]J. Liao, (2003): Beyond Perturbation: Introduction to Homotopy Analysis Method, Chapman and Hall/CRC Press, Boca Raton.