Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Hui Gao1 and Zhao Jun-Wei This email address is being protected from spambots. You need JavaScript enabled to view it.2

1Zhengzhou Railway Vocational & Technical College, Henan, 451460, China
2North China Institute of Science and Technology, Computer Science Institute, Beijing, 101601, China


 

Received: September 25, 2021
Accepted: December 2, 2021
Publication Date: February 27, 2022

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202212_25(6).0014  


ABSTRACT


Deep foundations (piles) are pushed into the soil so as to carry out as permanent support of structures. Because piles can carry a large value of load, they must be precisely designed in terms of settlement. Hence, controlling and estimating of piles settlement is an important subject in pilling design and construction. The primitive objective of the present document is to discover the appropriateness of applying an optimized radial basis function neural network for foreseeing the pile settlement in rock. Here, ant lion optimization (ALO), biogeography-based optimization (BBO), and grey wolf optimization (GWO) were integrated with radial basis function (RBFNN), named ALO-RBFNN, BBO-RBFNN, and GWO-RBFNN, to determine the optimal determinative parameters of RBFNN. To use these algorithms, the results of pile driving analyzer tests and earth’s properties were measured for the Klang Valley Mass Rapid Transit (KVMRT) project built and operating in Kuala Lumpur, Malaysia. All three RBFNN models have high-level potential in the SP prediction process, in which the lowest value of R2 for the training stage is 0.9073 and 0.9015 for the testing phase. ALO-RBFNN model owns the most appropriate performance by considering coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE), and variance account factor (VAF) values, which are highest in the training and testing stages. Therefore, it could be concluded that all three hybrid RBFNN models are really capable of predicting SP. However, the ALO algorithm represents a higher ability to determine the RBFNN parameters’ optimal value than other proposed algorithms.


Keywords: Pile in rock; Settlement; Prediction; Radial basis function; Ant lion optimization; Biogeography-based optimization; Grey wolf optimization


REFERENCES


  1. [1] P. Carrubba, (1997) “Skin friction on large-diameter piles socketed into rock" Canadian Geotechnical Journal 34(2): 230–240.
  2. [2] R. Sarkhani Benemara, (2017) “Experimental and analytical study of pile-stabilized layered slopes" Tabriz:University of Tabriz:
  3. [3] C. W. Ng, T. L. Yau, J. H. Li, and W. H. Tang, (2001) “Side resistance of large diameter bored piles socketed into decomposed rocks" Journal of geotechnical and geoenvironmental engineering 127(8): 642–657. DOI: 10.1061/(ASCE)1090-0241(2001)127:8(642).
  4. [4] M. Esmaeili-Falak, H. Katebi, and A. Javadi, (2018) “Experimental study of the mechanical behavior of frozen soils-A case study of tabriz subway" Periodica Polytechnica Civil Engineering 62(1): 117–125. DOI: 10.3311/PPci.10960.
  5. [5] M. Esmaeili-Falak, H. Katebi, A. Javadi, and S. Rahimi, (2017) “Experimental investigation of stress and strain characteristics of frozen sandy soils-A case study of Tabriz subway" Modares Civil Engineering journal 17(5): 13–23.
  6. [6] M. Esmaeili-Falak, H. Katebi, and A. Javadi, (2020) “Effect of freezing on stress–strain characteristics of granular and cohesive soils" Journal of Cold Regions Engineering 34(2): 05020001. DOI: 10.1061/(ASCE)CR. 1943-5495.0000205.
  7. [7] M. Esmaeili Falak, R. Sarkhani Benemaran, and R. Seifi, (2020) “Improvement of the mechanical and durability parameters of construction concrete of the Qotursuyi Spa" Concrete Research 13(2): 119–134.
  8. [8] A. Poorjafar, M. Esmaeili-Falak, and H. Katebi, (2021) “Pile-soil interaction determined by laterally loaded fixed head pile group" Geomechanics and Engineering 26(1): 13–25. DOI: 10.12989/gae.2021.26.1.013.
  9. [9] M. Esmaeili-Falak. “Effect of system’s geometry on the stability of frozen wall in excavation of saturated granular soils". (phdthesis). Doctoral dissertation, University of Tabriz, 2017.
  10. [10] R. Sarkhani Benemaran, M. Esmaeili-Falak, and H. Katebi, (2020) “Physical and numerical modelling of pilestabilised saturated layered slopes" Proceedings of the Institution of Civil Engineers-Geotechnical Engineering: 1–16. DOI: 10.1680/jgeen.20.00152.
  11. [11] M. F. Randolph and C. P. Wroth, (1978) “Analysis of deformation of vertically loaded piles" Journal of the geotechnical engineering division 104(12): 1465–1488.
  12. [12] P. Le Tirant, (1992) “Design guides for offshore structures: Offshore pile design":
  13. [13] R. Rowe and H. Armitage, (1987) “A design method for drilled piers in soft rock" Canadian Geotechnical Journal 24(1): 126–142.
  14. [14] F. P. Nejad, M. B. Jaksa, M. Kakhi, and B. A. McCabe, (2009) “Prediction of pile settlement using artificial neural networks based on standard penetration test data" Computers and Geotechnics 36(7): 1125–1133. DOI: 10.1016/j.compgeo.2009.04.003.
  15. [15] A. Soleimanbeigi and N. Hataf, (2006) “Prediction of settlement of shallow foundations on reinforced soils using neural networks" Geosynthetics International 13(4): 161–170. DOI: 10.1680/gein.2006.13.4.161.
  16. [16] M. A. Shahin, H. R. Maier, and M. B. Jaksa, (2002) “Predicting settlement of shallow foundations using neural networks" Journal of Geotechnical and Geoenvironmental Engineering 128(9): 785–793. DOI: 10.1061/(ASCE)1090-0241(2002)128:9(785).
  17. [17] M. Esmaeili-Falak, H. Katebi, M. Vadiati, and J. Adamowski, (2019) “Predicting triaxial compressive strength and Young’s modulus of frozen sand using artificial intelligence methods" Journal of Cold Regions Engineering 33(3): 04019007. DOI: 10.1061/(ASCE) CR.1943-5495.0000188.
  18. [18] A. Nassr, M. Esmaeili-Falak, H. Katebi, and A. Javadi, (2018) “A new approach to modeling the behavior of frozen soils" Engineering Geology 246: 82–90. DOI: 10.1016/j.enggeo.2018.09.018.
  19. [19] H. Rezaei, R. Nazir, and E. Momeni, (2016) “Bearing capacity of thin-walled shallow foundations: an experimental and artificial intelligence-based study" Journal of Zhejiang University-SCIENCE A 17(4): 273–285. DOI: 10.1631/jzus.A1500033.
  20. [20] S. Yagiz, E. Sezer, and C. Gokceoglu, (2012) “Artificial neural networks and nonlinear regression techniques to assess the influence of slake durability cycles on the prediction of uniaxial compressive strength and modulus of elasticity for carbonate rocks" International Journal for Numerical and Analytical Methods in Geomechanics 36(14): 1636–1650. DOI: 10.1002/nag.1066.
  21. [21] E. Momeni, R. Nazir, D. J. Armaghani, and H. Maizir, (2015) “Application of artificial neural network for predicting shaft and tip resistances of concrete piles" Earth Sciences Research Journal 19(1): 85–93. DOI: 10.15446/esrj.v19n1.38712.
  22. [22] M. Khandelwal and T. Singh, (2007) “Evaluation of blast-induced ground vibration predictors" Soil Dynamics and Earthquake Engineering 27(2): 116–125. DOI: 10.1016/j.soildyn.2006.06.004.
  23. [23] D. J. Armaghani, M. F. M. Amin, S. Yagiz, R. S. Faradonbeh, and R. A. Abdullah, (2016) “Prediction of the uniaxial compressive strength of sandstone using various modeling techniques" International Journal of Rock Mechanics and Mining Sciences 85: 174–186. DOI: 10.1016/j.ijrmms.2016.03.018.
  24. [24] M. Najafzadeh and G.-A. Barani, (2011) “Comparison of group method of data handling based genetic programming and back propagation systems to predict scour depth around bridge piers" Scientia Iranica 18(6): 1207–1213. DOI: 10.1016/j.scient.2011.11.017.
  25. [25] M. Najafzadeh, G.-A. Barani, and H. M. Azamathulla, (2013) “GMDH to predict scour depth around a pier in cohesive soils" Applied ocean research 40: 35–41. DOI:10.1016/j.apor.2012.12.004.
  26. [26] M. Najafzadeh and H. M. Azamathulla, (2015) “Neuro-fuzzy GMDH to predict the scour pile groups due to waves" Journal of Computing in Civil Engineering 29(5): 04014068. DOI: 10.1061/(ASCE)CP.1943-5487.0000376.
  27. [27] M. Pal and S. Deswal, (2010) “Modelling pile capacity using Gaussian process regression" Computers and Geotechnics 37(7-8): 942–947. DOI: 10.1016/j.compgeo.2010.07.012.
  28. [28] P. Samui, (2019) “Determination of friction capacity of driven pile in clay using gaussian process regression (GPR), and minimax probability machine regression (MPMR)" Geotechnical and Geological Engineering 37(5): 4643–4647. DOI: 10.1007/s10706-019-00928-8.
  29. [29] E. Momeni, M. B. Dowlatshahi, F. Omidinasab, H.Maizir, and D. J. Armaghani, (2020) “Gaussian process regression technique to estimate the pile bearing capacity" Arabian Journal for Science and Engineering 45(10): 8255–8267. DOI: 10.1007/s13369-020-04683-4.
  30. [30] W. Zhang and A. T. C. Goh, (2013) “Multivariate adaptive regression splines for analysis of geotechnical engineering systems" Computers and Geotechnics 48: 82–95. DOI: 10.1016/j.compgeo.2012.09.016.
  31. [31] R. S. Benemaran and M. Esmaeili-Falak, (2020) “Optimization of cost and mechanical properties of concrete with admixtures using MARS and PSO" Computers and Concrete, An International Journal 26(4): 309–316. DOI: 10.12989/cac.2020.26.4.309.
  32. [32] L. Teodorescu and D. Sherwood, (2008) “High energy physics event selection with gene expression programming" Computer Physics Communications 178(6):409–419. DOI: 10.1016/j.cpc.2007.10.003.
  33. [33] T.-T. Le and M. V. Le, (2021) “Development of user-friendly kernel-based Gaussian process regression model for prediction of load-bearing capacity of square concretefilled steel tubular members" Materials and Structures 54(2): 1–24. DOI: 10.1617/s11527-021-01646-5.
  34. [34] I. Alkroosh and H. Nikraz, (2011) “Correlation of pile axial capacity and CPT data using gene expression programming" Geotechnical and Geological Engineering 29(5): 725–748. DOI: 10.1007/s10706-011-9413-1.
  35. [35] S. R. Dindarloo, (2015) “Prediction of blast-induced ground vibrations via genetic programming" International Journal of Mining Science and Technology 25(6): 1011–1015. DOI: 10.1016/j.ijmst.2015.09.020.
  36. [36] A. Mollahasani, A. H. Alavi, and A. H. Gandomi, (2011) “Empirical modeling of plate load test moduli of soil via gene expression programming" Computers and Geotechnics 38(2): 281–286. DOI: 10.1016/j.compgeo.2010.11.008.
  37. [37] S. Alemdag, Z. Gurocak, A. Cevik, A. Cabalar, and C. Gokceoglu, (2016) “Modeling deformation modulus of a stratified sedimentary rock mass using neural network, fuzzy inference and genetic programming" Engineering Geology 203: 70–82. DOI: 10.1016/j.enggeo.2015.12.002.
  38. [38] D. J. Armaghani, R. S. Faradonbeh, H. Rezaei, A. S. A. Rashid, and H. B. Amnieh, (2018) “Settlement prediction of the rock-socketed piles through a new technique based on gene expression programming" Neural Computing and Applications 29(11): 1115–1125. DOI: 10.1007/s00521-016-2618-8.
  39. [39] D. J. Armaghani, P. G. Asteris, S. A. Fatemi, M. Hasanipanah, R. Tarinejad, A. S. A. Rashid, and V. V. Huynh, (2020) “On the use of neuro-swarm system to forecast the pile settlement" Applied Sciences 10(6):1904. DOI: 10.3390/app10061904.
  40. [40] J. Wu, J. Long, and M. Liu, (2015) “Evolving RBF neural networks for rainfall prediction using hybrid particle swarm optimization and genetic algorithm" Neurocomputing 148: 136–142. DOI: 10.1016/j.neucom.2012.10.043.
  41. [41] L. Xu, F. Qian, Y. Li, Q. Li, Y.-w. Yang, and J. Xu, (2016) “Resource allocation based on quantum particle swarm optimization and RBF neural network for overlay cognitive OFDM System" Neurocomputing 173: 1250–1256. DOI: 10.1016/j.neucom.2015.08.083.
  42. [42] X. Zhu and N. Wang, (2017) “Cuckoo search algorithm with membrane communication mechanism for modeling overhead crane systems using RBF neural networks" Applied Soft Computing 56: 458–471. DOI: 10.1016/j.asoc.2017.03.019.
  43. [43] Z. Yang, M. Mourshed, K. Liu, X. Xu, and S. Feng, (2020) “A novel competitive swarm optimized RBF neural network model for short-term solar power generation forecasting" Neurocomputing 397: 415–421. DOI: 10.1016/j.neucom.2019.09.110.
  44. [44] Y.Wang, L. Yuan, M. Khishe, A. Moridi, and F. Mohammadzade, (2020) “Training RBF NN using sinecosine algorithm for sonar target classification" Archives of Acoustics: 753–764. DOI: 10.24425/aoa.2020.135281.
  45. [45] A.W. Hatheway. The complete ISRM suggested methods for rock characterization, testing and monitoring; 1974–2006. 2009.
  46. [46] S. Mirjalili, (2015) “The ant lion optimizer" Advances in engineering software 83: 80–98. DOI: 10.1016/j.advengsoft.2015.01.010.
  47. [47] D. Simon, (2008) “Biogeography-based optimization" IEEE transactions on evolutionary computation 12(6): 702–713.
  48. [48] S. Mirjalili, S. M. Mirjalili, and A. Lewis, (2014) “Grey wolf optimizer" Advances in engineering software 69: 46–61.
  49. [49] W. Sun, D. Liu, J.Wen, and Z.Wu, (2017) “Modeling of MEMS gyroscope random errors based on grey model and RBF neural network" J. Navig. Position 5: 9–13.
  50. [50] S. Seshagiri and H. K. Khalil, (2000) “Output feedback control of nonlinear systems using RBF neural networks" IEEE Transactions on Neural Networks 11(1): 69–79. DOI: 10.1109/72.822511.


Latest Articles