Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Tran Huynh Gia Huy1,2, Nguyen Thi Truc Phuong1,2, Ho Gia Quynh1,2, Nguyen Van Dung1,2, Ngo Tran Hoang Duong1,2,  Nguyen Quang Long1,2This email address is being protected from spambots. You need JavaScript enabled to view it. 

1Faculty of Chemical Engineering, Ho Chi Minh University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam

2Vietnam National University Ho Chi Minh City, Linh Trung Ward, Ho Chi Minh City, Vietnam


 

Received: March 5, 2023
Accepted: July 18, 2023
Publication Date: October 5, 2023

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202405_27(5).0007  


Nowadays “green” processes such as room temperature processes are interested in new researches for production of practical-important solid materials. Zeolitic LTA materials are commonly prepared by hydrothermal transformation using sodium hydroxide (NaOH), sodium aluminate (NaAlO2), and sodium metasilicate (Na2SiO3) at high temperatures (95 – 100 C). In this study, sub-micron zeolite LTA was prepared at ambient temperature from metakaolin which is easily obtained from kaolin mineral. The prepared materials were characterized using various methods, including XRD to identify their structure, SEM and EDX to analyze the shape and proportional components of the elements, and the N2 adsorption–desorption method to determine the surface area and pore volume. Regarding the Cu2+ ion adsorption capability of the synthetic zeolite, the experimental results revealed that the sub-micron zeolite LTA has potential applications in practice because its adsorption rate exceeds that of the commercial zeolite and the rate constant of the second–order kinetics model of the prepared zeolite was 1.7 times higher than that of the commercial zeolite.


Keywords: LTA zeolite, metakaolin, ambient temperature synthesis, sub-micron size, Cu2+ adsorption


  1. [1] F. Collins, A. Rozhkovskaya, J. G. Outram, and G. J. Millar, (2020) “A critical review of waste resources, synthesis, and applications for Zeolite LTA" Microporous and Mesoporous Materials 291: 109667. DOI: https: //doi.org/10.1016/j.micromeso.2019.109667. 
  2. [2] L. B. McCusker, F. Liebau, and G. Engelhardt, (2001) “Nomenclature of structural and compositional characteristics of ordered microporous and mesoporous materials with inorganic hosts(IUPAC Recommendations 2001)" Pure and Applied Chemistry 73(2): 381–394. DOI: doi:10.1351/pac200173020381.
  3. [3] A. Miyaji, Y. Iwase, T. Nishitoba, N. Q. Long, K. Motokura, and T. Baba, (2015) “Influence of zeolite pore structure on product selectivities for protolysis and hydride transfer reactions in the cracking of n-pentane" Phys. Chem. Chem. Phys. 17: 5014–5032. DOI: 10.1039/C4CP04438J.
  4. [4] W.-R. Lim, C.-H. Lee, and S.-Y. Hamm, (2021) “Synthesis and characteristics of Na-A zeolite from natural kaolin in Korea" Materials Chemistry and Physics 261: 124230. DOI: https: //doi.org/10.1016/j.matchemphys.2021.124230.  
  5. [5] A. Rahman, A. Purwanto, A. Endah, E. Handoko, E. Kusrini, and E. A. Prasetyanto, (2019) “Synthesis and characterization of LTA zeolite from Kaolin Bangka" Journal of Physics: Conference Series 1402(5): 055057. DOI: 10.1088/1742-6596/1402/5/055057.
  6. [6] R. Belaabed, S. Elabed, A. Addaou, A. Laajab, M. A. Rodríguez, and A. Lahsini, (2016) “Synthesis of LTA zeolite for bacterial adhesion" Boletín de la Sociedad Española de Cerámica y Vidrio 55(4): 152–158. DOI: https: //doi.org/10.1016/j.bsecv.2016.05.001.
  7. [7] A. Rozhkovskaya, J. Rajapakse, and G. J. Millar, (2021) “Optimisation of zeolite LTA synthesis from alum sludge and the influence of the sludge source" Journal of Environmental Sciences 99: 130–142. DOI: https: //doi.org/10.1016/j.jes.2020.06.019. 
  8. [8] Y. Jin, L. Li, Z. Liu, S. Zhu, and D. Wang, (2021) “Synthesis and characterization of low-cost zeolite NaA from coal gangue by hydrothermal method" Advanced Powder Technology 32(3): 791–801. DOI: https: //doi.org/ 10.1016/j.apt.2021.01.024.    
  9. [9] A. Rozhkovskaya, J. Rajapakse, and G. J. Millar, (2021) “Synthesis of high-quality zeolite LTA from alum sludge generated in drinking water treatment plants" Journal of Environmental Chemical Engineering 9(2): 104751. DOI: https: //doi.org/10.1016/j.jece.2020.104751
  10. [10] V. P. Valtchev, L. Tosheva, and K. N. Bozhilov, (2005) “Synthesis of Zeolite Nanocrystals at Room Temperature" Langmuir 21(23): 10724–10729. DOI: 10.1021/ la050323e. eprint: https : / / doi . org / 10 . 1021 / la050323e.
  11. [11] X. Zhang, D. Tang, and G. Jiang, (2013) “Synthesis of zeolite NaA at room temperature: The effect of synthesis parameters on crystal size and its size distribution" Advanced Powder Technology 24(3): 689–696. DOI: https: //doi.org/10.1016/j.apt.2012.12.010.
  12. [12] J. P. L. Oracion, L. B. De La Rosa, M. L. M. Budlayan, M. J. D. Rodriguez, J. P. Manigo, J. N. Patricio, S. D. Arco, E. S. Austria, A. C. Alguno, C. C. Deocaris, and R. Y. Capangpangan, (2021) “Simple one-pot in situ synthesis of gold and silver nanoparticles on bacterial cellulose membrane using polyethyleneimine" Journal of Applied Science and Engineering 24: 351–357. DOI: 10.6180/jase.202106_24(3).0010.
  13. [13] N. Yousef, R. Farouq, and R. Hazzaa, (2016) “Adsorption kinetics and isotherms for the removal of nickel ions from aqueous solutions by an ion-exchange resin: application of two and three parameter isotherm models" Desalination and Water Treatment 57(46): 21925–21938. DOI: 10.1080/19443994.2015.1132474. eprint: https: //doi.org/10.1080/19443994.2015.1132474.
  14. [14] A. A. Antar, A. A. Alsofiany, and M. Y. B. Harun, (2022) “Optimisation the Removal of Fe (II) Ions from Wastewater using Clay- Alginate Composite Beads" Journal of Applied Science and Engineering 26: 475–484. DOI: 10.6180/jase.202304_26(4).0003.
  15. [15] N. N. Khalid, W. K. Al-Saraj, and H. F. Naji, (2021) “Behavior of MK-based Geopolymer Concrete Circular Columns Exposed to Fire" Journal of Applied Science and Engineering 24: 91–97. DOI: 10.6180/jase.202102_24(1).0012.
  16. [16] N.-E.-H. Fardjaoui, F. Z. El Berrichi, and F. Ayari, (2017) “Kaolin-issued zeolite A as efficient adsorbent for Bezanyl Yellow and Nylomine Green anionic dyes" Microporous and Mesoporous Materials 243: 91–101. DOI: https: //doi.org/10.1016/j.micromeso.2017.01.008.
  17. [17] M. Hong, L. Yu, Y. Wang, J. Zhang, Z. Chen, L. Dong, Q. Zan, and R. Li, (2019) “Heavy metal adsorption with zeolites: The role of hierarchical pore architecture" Chemical Engineering Journal 359: 363–372. DOI: https: //doi.org/10.1016/j.cej.2018.11.087.
  18. [18] I. V. Joseph, L. Tosheva, and A. M. Doyle, (2020) “Simultaneous removal of Cd(II), Co(II), Cu(II), Pb(II), and Zn(II) ions from aqueous solutions via adsorption on FAUtype zeolites prepared from coal fly ash" Journal of Environmental Chemical Engineering 8(4): 103895. DOI: https: //doi.org/10.1016/j.jece.2020.103895.
  19. [19] Z. Xue, J. Ma, W. Hao, X. Bai, Y. Kang, J. Liu, and R. Li, (2012) “Synthesis and characterization of ordered mesoporous zeolite LTA with high ion exchange ability" J. Mater. Chem. 22: 2532–2538. DOI: 10.1039/C1JM14740D.
  20. [20] J. Li, M. Li, Q. Song, S. Wang, X. Cui, F. Liu, and X. Liu, (2020) “Efficient recovery of Cu(II) by LTA-zeolites with hierarchical pores and their resource utilization in electrochemical denitrification: Environmentally friendly design and reutilization of waste in water" Journal of Hazardous Materials 394: 122554. DOI: https: //doi.org/10.1016/j.jhazmat.2020.122554.
  21. [21] T. Motsi, N. Rowson, and M. Simmons, (2009) “Adsorption of heavy metals from acid mine drainage by natural zeolite" International Journal of Mineral Processing 92(1): 42–48. DOI: https: //doi.org/10.1016/j.minpro.2009.02.005


Latest Articles

    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.