Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Yue RenThis email address is being protected from spambots. You need JavaScript enabled to view it.

College of General Education, Heilongjiang Polytechnic, harbin, Heilongjiang, 150000, China


Received: March 11, 2023
Accepted: August 4, 2023
Publication Date: November 4, 2023

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202406_27(6).0015  


In this paper, we propose two techniques for constructing new explicit exact (EE) solutions of the the ZK-BBM equation. we utilize either the modified Kudryashov technique and a new Kudryashov technique in conjunction with symbolic computation to achieve this goal. In addition, 3D and 2D plots were generated to illustrate the features of the obtained solutions. This was achieved by meticulously choosing appropriate values for the relevant parameters. The results determine that these techniques are a mighty math instrument to solve nonlinear partial differential equations (NLPDEs) in terms of efficiency, validity and accuracy.


Keywords: ZK-BBM equation, new Kudryashov technique; modified Kudryashov technique; explicit exact solutions


  1. [1] M. Inc, H. Rezazadeh, J. Vahidi, M. Eslami, M. A. Akinlar, M. N. Ali, and Y.-M. Chu, (2020) “New solitary wave solutions for the conformable Klein-Gordon equation with quantic nonlinearity" Aims Math 5(6): 6972–6984.
  2. [2] D. Kumar and G. C. Paul, (2021) “Solitary and periodic wave solutions to the family of nonlinear conformable fractional Boussinesq-like equations" Mathematical Methods in the Applied Sciences 44(4): 3138–3158.
  3. [3] N. H. M. Shahen, M. H. Bashar, and M. S. Ali, (2020) “Dynamical analysis of long-wave phenomena for the nonlinear conformable space-time fractional (2+ 1)- dimensional AKNS equation in water wave mechanics" Heliyon 6(10):
  4. [4] D. Kumar, G. C. Paul, A. R. Seadawy, and M. T. Darvishi, (2022) “A variety of novel closed-form soliton solutions to the family of Boussinesq-like equations with different types" Journal of Ocean Engineering and Science 7(6): 543–554.
  5. [5] N. Raza, A. R. Seadawy, S. Arshed, and M. H. Rafiq, (2022) “A variety of soliton solutions for the MikhailovNovikov-Wang dynamical equation via three analytical methods" Journal of Geometry and Physics 176: 104515.
  6. [6] H. Rezazadeh, (2018) “New solitons solutions of the complex Ginzburg-Landau equation with Kerr law nonlinearity" Optik 167: 218–227.
  7. [7] R. Saleh, S. M. Mabrouk, and A. M. Wazwaz, (2021) “The singular manifold method for a class of fractionalorder diffusion equations" Waves in Random and Complex Media: 1–12.
  8. [8] H. M. Baskonus and H. Bulut, (2016) “Exponential prototype structures for (2+ 1)-dimensional Boiti-LeonPempinelli systems in mathematical physics" Waves in Random and Complex Media 26(2): 189–196.
  9. [9] M. S. M. Shehata, H. Rezazadeh, E. H. M. Zahran, E. Tala-Tebue, and A. Bekir, (2019) “New optical soliton solutions of the perturbed Fokas-Lenells equation" Communications in Theoretical Physics 71(11): 1275.
  10. [10] K. U. Tariq, A. R. Seadawy, and M. Younis, (2018) “Explicit, periodic and dispersive optical soliton solutions to the generalized nonlinear Schrödinger dynamical equation with higher order dispersion and cubic-quintic nonlinear terms" Optical and Quantum Electronics 50: 1–19.
  11. [11] R. A. Attia, D. Lu, and M. M. Khater, (2018) “Structure of new solitary solutions for the Schwarzian Korteweg De Vries equation and (2+ 1)-Ablowitz-Kaup-Newell-Segur equation" Phys. J 1(3): 234–254.
  12. [12] M. K. Elboree, (2015) “Derivation of soliton solutions to nonlinear evolution equations using He’s variational principle" Applied Mathematical Modelling 39(14): 4196–4201.
  13. [13] A. Biswas, M. O. Al-Amr, H. Rezazadeh, M. Mirzazadeh, M. Eslami, Q. Zhou, S. P. Moshokoa, and M. Belic, (2018) “Resonant optical solitons with dual-power law nonlinearity and fractional temporal evolution" Optik 165: 233–239.
  14. [14] R. Cimpoiasu, (2020) “Multiple invariant solutions of the 3 D potential Yu–Toda–Sasa–Fukuyama equation via symmetry technique" International Journal of Modern Physics B 34(20): 2050188.
  15. [15] B. Ghanbari, K. S. Nisar, and M. Aldhaifallah, (2020) “Abundant solitary wave solutions to an extended nonlinear Schrödinger’s equation with conformable derivative using an efficient integration method" Advances in Difference Equations 2020(1): 1–25.
  16. [16] M. Eslami and H. Rezazadeh, (2016) “The first integral method for Wu–Zhang system with conformable timefractional derivative" Calcolo 53(3): 475–485.
  17. [17] K. A. Muhamad, T. Tanriverdi, A. A. Mahmud, and H. M. Baskonus, (2023) “Interaction characteristics of the Riemann wave propagation in the (2+ 1)-dimensional generalized breaking soliton system" International Journal of Computer Mathematics 100(6): 1340–1355.
  18. [18] H. F. Ismael, H. M. Baskonus, H. Bulut, and W. Gao, (2023) “Instability modulation and novel optical soliton solutions to the Gerdjikov–Ivanov equation with Mfractional" Optical and Quantum Electronics 55(4): 303.
  19. [19] N. Raza, F. Salman, A. R. Butt, and M. L. Gandarias, (2023) “Lie symmetry analysis, soliton solutions and qualitative analysis concerning to the generalized q-deformed Sinh-Gordon equation" Communications in Nonlinear Science and Numerical Simulation 116: 106824.
  20. [20] N. Raza, S. Arshed, F. Salman, J. F. Gómez-Aguilar, and J. Torres-Jiménez, (2022) “Phase characterization and new optical solitons of a pulse passing through nonlinear dispersive media" Modern Physics Letters B 36(19): 2250098.
  21. [21] N. Raza, A. Batool, and M. Inc, (2022) “New hyperbolic and rational form solutions of (2+ 1)-dimensional generalized Korteweg-de Vries model" Journal of Ocean Engineering and Science:
  22. [22] N. Raza, M. H. Rafiq, A. Bekir, and H. Rezazadeh, (2022) “Optical solitons related to (2+ 1)-dimensional Kundu–Mukherjee–Naskar model using an innovative integration architecture" Journal of Nonlinear Optical Physics & Materials 31(03): 2250014.
  23. [23] J. Manafian and M. Lakestani, (2016) “Application of tan (ϕ/2)-expansion method for solving the Biswas–Milovic equation for Kerr law nonlinearity" Optik 127(4): 2040–2054.
  24. [24] U. Younas, J. Ren, L. Akinyemi, and H. Rezazadeh, (2023) “On the multiple explicit exact solutions to the double-chain DNA dynamical system" Mathematical Methods in the Applied Sciences 46(6): 6309–6323.
  25. [25] T. A. Sulaiman, H. Bulut, and H. M. Baskonus. “Construction of various soliton solutions via the simplified extended sinh-Gordon equation expansion method”. In: ITM Web of Conferences. 22. EDP Sciences, 2018, 1062.
  26. [26] N. Salamat, A. H. Arif, M. Mustahsan, M. M. S. Missen, and V. B. S. Prasath, (2022) “On compacton traveling wave solutions of Zakharov-Kuznetsov-BenjaminBona-Mahony (ZK-BBM) equation" Computational and Applied Mathematics 41(8): 365.
  27. [27] N. Raza and A. Zubair, (2019) “Optical dark and singular solitons of generalized nonlinear Schrödinger’s equation with anti-cubic law of nonlinearity" Modern Physics Letters B 33(13): 1950158.
  28. [28] N. Raza, A. R. Seadawy, M. Kaplan, and A. R. Butt, (2021) “Symbolic computation and sensitivity analysis of nonlinear Kudryashov’s dynamical equation with applications" Physica Scripta 96(10): 105216.
  29. [29] A. A. Mahmud, T. Tanriverdi, and K. A. Muhamad, (2023) “Exact traveling wave solutions for (2+ 1)- dimensional Konopelchenko-Dubrovsky equation by using the hyperbolic trigonometric functions methods" International Journal of Mathematics and Computer in Engineering: DOI: 10.2478/ijmce-2023-0002.
  30. [30] A.-M. Wazwaz, (2005) “Compact and noncompact physical structures for the ZK–BBM equation" Applied Mathematics and Computation 169(1): 713–725.
  31. [31] A.-M. Wazwaz, (2008) “The extended tanh method for new compact and noncompact solutions for the KP–BBM and the ZK–BBM equations" Chaos, Solitons & Fractals 38(5): 1505–1516.
  32. [32] S. Bibi and S. T. Mohyud-Din, (2014) “Traveling wave solutions of ZK-BBM equation sine-cosine method" Commun. Numer. Anal. 2014: 1–9.
  33. [33] H. Naher, (2015) “New approach of (G’/G)-expansion method and new approach of generalized (G’/G)-expansion method for ZKBBM equation" Journal of the Egyptian Mathematical Society 23(1): 42–48.
  34. [34] A. Ali, M. A. Iqbal, and S. T. MohyudDin, (2016) “Solitary wave solutions Zakharov–Kuznetsov–Benjamin–Bona–Mahony (ZK–BBM) equation" Journal of the Egyptian Mathematical Society 24(1): 44–48.
  35. [35] J. Zhao and W. Li, (2014) “Exact solitary wave solution in the ZK-BBM equation" Journal of Nonlinear Dynamics 2014:
  36. [36] M. Song and Z. Liu, (2014) “Periodic wave solutions and their limits for the ZK–BBM equation" Applied Mathematics and Computation 232: 9–26.
  37. [37] M. Song and C. Yang, (2010) “Exact traveling wave solutions of the Zakharov-Kuznetsov–Benjamin-BonaMahony equation" Applied Mathematics and Computation 216(11): 3234–3243.
  38. [38] Ö. Güner, A. Bekir, L. Moraru, and A. Biswas. “Bright and dark soliton solutions of the generalized Zakharov–Kuznetsov–Benjamin–Bona–Mahony nonlinear evolution equation”. In: Proc. Rom. Acad. Ser. A. 16. 3. 2015, 422–429.
  39. [39] R. Kumar, M. Kumar, and A. Kumar, (2013) “Some soliton solutions of non linear partial differential equations by Tan-Cot method" IOSR Journal of Mathematics (IOSR-JM) 6(6): 23–28.
  40. [40] M. Kayum, R. Roy, M. A. Akbar, and M. S. Osman, (2021) “Study of W-shaped, V-shaped, and other type of surfaces of the ZK-BBM and GZD-BBM equations" Optical and Quantum Electronics 53(7): 1–20.
  41. [41] O. Tasbozan and A. Kurt, (2015) “Approximate analytical solution of ZK-BBM equation" Sohag Journal of Mathematics 2(2): 57–60.
  42. [42] M. M. Kabir, A. Khajeh, E. Abdi Aghdam, and A. Yousefi Koma, (2011) “Modified Kudryashov method for finding exact solitary wave solutions of higher-order nonlinear equations" Mathematical methods in the Applied Sciences 34(2): 213–219.
  43. [43] S. M. Mirhosseini-Alizamini, N. Ullah, J. Sabi’u, H. Rezazadeh, and M. Inc, (2021) “New exact solutions for nonlinear Atangana conformable Boussinesq-like equations by new Kudryashov method" International Journal of Modern Physics B 35(12): 215016.


Latest Articles