- [1] J.-W. Sohn and S.-B. Choi, (2017) “Various robots made from piezoelectric materials and electroactive polymers: a review" International Journal of Mechanical Systems Engineering 3(1): 122. DOI: 10.15344/2455-7412/2017/122.
- [2] Y. Wang, X. Xu, and L. Li, (2023) “Advances in Tunable Bandgaps of Piezoelectric Phononic Crystals" Materials 16(18): 6285. DOI: 10.3390/ma16186285.
- [3] Z. Han, P. Jiao, and Z. Zhu, (2021) “Combination of piezoelectric and triboelectric devices for robotic selfpowered sensors" Micromachines 12(7): 813. DOI: 10.3390/mi12070813.
- 4] M. Ju, Z. Dou, J.-W. Li, X. Qiu, B. Shen, D. Zhang, F.-Z. Yao, W. Gong, and K. Wang, (2023) “Piezoelectric Materials and Sensors for Structural Health Monitoring: Fundamental Aspects, Current Status, and Future Perspectives" Sensors 23(1): 543. DOI: 10.3390/s23010543.
- [5] S. Aimmanee and C. Phongsitthisak, (2022) “Analysis of electrical energy harvesting from piezoelectric integrated shallow conical composite shells in metastable configurations using mixed formulation" Composite Structures 282: 115031. DOI: 10.1016/j.compstruct.2021.115031.
- [6] C. Bazilo, A. Zagorskis, O. Petrishchev, Y. Bondarenko, V. Zaika, and Y. Petrushko. “Modelling of piezoelectric transducers for environmental monitoring”. In: Proceedings of 10th International Conference “Environmental Engineering”, Vilnius Gediminas Technical University, Lithuania. 2017. DOI: 10.3846/enviro.2017.008.
- [7] J. Van Suchtelen, (1972) “Product properties: a new application of composite materials" Phillips Research Reports 27: 28–37. DOI: 10.1299/jsmea.48.151.
- [8] A. Van Run, D. Terrell, and J. Scholing, (1974) “An in situ grown eutectic magnetoelectric composite material: part 2 physical properties" Journal of Materials Science 9: 1710–1714.
- [9] A.-M. Jiang and H.-J. Ding, (2004) “Analytical solutions to magneto-electro-elastic beams" Structural Engineering and Mechanics, An Int’l Journal 18(2): 195–209.
- [10] A.-M. Jiang, H.-J. Ding, and G.-Q. Wu, (2006) “Green’s Functions for a Two-Phase Infinite Magneto-ElectroElastic Plane" Multidiscipline Modeling in Materials and Structures 2(1): 67–82. DOI: 10.1163/157361106775249934.
- [11] F. C. Buroni and A. Sáez, (2010) “Three-dimensional Green’s function and its derivative for materials with general anisotropic magneto-electro-elastic coupling" Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 466(2114): 515–537. DOI: 10.1098/rspa.2009.0389.
- [12] J. Sládek, V. Sladék, S. Krahulec, and E. Pan, (2013) “The MLPG analyses of large deflections of magnetoelectroelastic plates" Engineering Analysis with Boundary Elements 37(4): 673–682. DOI: 10.1016/j.enganabound.2013.02.001.
- [13] J. Sládek, V. Sladék, S. Krahulec, C.-S. Chen, and D.-L. Young, (2015) “Analyses of circular magnetoelectroelastic plates with functionally graded material properties" Mechanics of Advanced Materials and Structures 22(6): 479–489. DOI: 10.1080/15376494.2013.807448.
- [14] J. Liu, P.-C. Zhang, G. Lin, W.-Y. Wang, and S. Lu, (2016) “Solutions for the magneto-electro-elastic plate using the scaled boundary finite element method" Engineering Analysis with Boundary Elements 68: 103– 114. DOI: 10.1016/j.enganabound.2016.04.005.
- [15] V. Mahesh and S. Kattimani, (2017) “A 3D finite element static and free vibration analysis of magneto-electroelastic beam" Coupled Systems Mechanics 6: 465–485.
- [16] P.-C. Zhang, C.-Z. Qi, H.-Y. Fang, and X. Sun, (2021) “Free vibration analysis of functionally graded magneto-electro-elastic plates with in-plane material heterogeneity" Journal of Intelligent Material Systems and Structures 32(11): 1234–1255. DOI: 10.1177/1045389X20975487.
- [17] W.-K. Liu, S. Jun, and Y.-F. Zhang, (1995) “Reproducing kernel particle methods" International Journal for Numerical Methods in Fluids 20(8-9): 1081–1106. DOI: 10.1002/fld.1650200824.
- [18] L. B. Lucy, (1977) “A numerical approach to the testing of the fission hypothesis" Astronomical Journal 82: 1013–1024.
- [19] M. Hillman, J.-S. Chen, and Y. Bazilevs, (2015) “Variationally consistent domain integration for isogeometric analysis" Computer Methods in Applied Mechanics and Engineering 284: 521–540. DOI: 10.1016/j.cma.2014.10.004.
- [20] J.-S. Chen, C.-T. Wu, S. Yoon, and Y. You, (2001) “A stabilized conforming nodal integration for Galerkin meshfree methods" International journal for numerical methods in engineering 50(2): 435–466.
- [21] M. Hillman and J.-S. Chen, (2016) “An accelerated, convergent, and stable nodal integration in Galerkin meshfree methods for linear and nonlinear mechanics" International Journal for Numerical Methods in Engineering 107(7): 603–630. DOI: 10.1002/nme.5183.
- [22] D. Wang and J. Wu, (2019) “An inherently consistent reproducing kernel gradient smoothing framework toward efficient Galerkin meshfree formulation with explicit quadrature" Computer Methods in Applied Mechanics and Engineering 349: 628–672. DOI: 10.1016/j.cma.2019. 02.029.
- [23] J. Wu and D. Wang, (2021) “An accuracy analysis of Galerkin meshfree methods accounting for numerical integration" Computer Methods in Applied Mechanics and Engineering 375: 113631. DOI: 10.1016/j.cma.2020.113631.
- [24] H. Du, J. Wu, D. Wang, and J. Chen, (2022) “A unified reproducing kernel gradient smoothing Galerkin meshfree approach to strain gradient elasticity" Computational Mechanics 70(1): 73–100. DOI: 10.1007/s00466-022-02156-z.
- [25] W. K. Liu, S. Jun, and Y. F. Zhang, (1995) “Reproducing kernel particle methods" International Journal for Numerical Methods in Fluids 20(8-9): 1081–1106.
- [26] J.-S. Chen, C. Pan, C.-T. Wu, and W. K. Liu, (1996) “Reproducing Kernel Particle Methods for large deformation analysis of non-linear structures" Computer Methods in Applied Mechanics and Engineering 139(1-4): 195–227. DOI: 10.1016/S0045-7825(96)01083-3.
- [27] S. A. Kah and J.-X. Liu, (2005) “On the constitutive equations of magnetoelectroelastic solids" Journal of Intelligent Material Systems and Structures 16(7-8): 597–602. DOI: 10.1177/1045389X050516.
- [28] K.-J. Bathe. Finite element procedures. Klaus-Jurgen Bathe, 2006.
- [29] T.-H. Huang, H. Wei, J.-S. Chen, and M. Hillman, (2020) “RKPM2D: an open-source implementation of nodally integrated reproducing kernel particle method for solving partial differential equations" Computational particle mechanics 7: 393–433. DOI: 10.1007/s40571-019-00272-x.
- [30] J.-S. Chen, C.-H. Pan, C.-T. Wu, and W.-K. Liu, (1996) “Reproducing kernel particle methods for large deformation analysis of non-linear structures" Computer methods in applied mechanics and engineering 139(1-4): 195–227. DOI: 10.1016/S0045-7825(96)01083-3.
- [31] J.-S. Chen, M. Hillman, and M. Rüter, (2013) “An arbitrary order variationally consistent integration for Galerkin meshfree methods" International Journal for Numerical Methods in Engineering 95(5): 387–418. DOI: 10.1002/nme.4512.
- [32] A. Annigeri, N. Ganesan, and S. Seetharaman. “Static studies on magneto-electro-elastic beam”. In: Proceedings of the ISSS 2005 International Conference on Smart Materials Structures and Systems, Bangalore. 2005.