- [1] F. A. Anindyntha and M. K. Fuddin, (2023) “How do macroeconomic variables and financial inclusion affect financial stability in Indonesia?" Jurnal Perspektif Pembiayaan dan Pembangunan Daerah 11(5): 359–370.
- [2] B. K. Ababio and W. Lu, (2023) “Barriers and enablers of circular economy in construction: a multi-system perspective towards the development of a practical framework" Construction Management and Economics 41(1): 3–21. DOI: 10.1080/01446193.2022.2135750.
- [3] M. Yu, M. Umair, Y. Oskenbayev, and Z. Karabayeva, (2023) “Exploring the nexus between monetary uncertainty and volatility in global crude oil: a contemporary approach of regime-switching" Resources Policy 85: 103886.
- [4] R. Wang, B. S. Mohammed, and R. Parthasarathy, (2023) “Analysis on Risk Awareness Model and Economic Growth of Finance Industry" Journal of Internet Technology 24(3): 697–707.
- [5] R. F. Engle and J. G. Rangel, (2008) “The splineGARCH model for low-frequency volatility and its global macroeconomic causes" The review of financial studies 21(3): 1187–1222. DOI: 10.1093/rfs/hhn004.
- [6] F. X. Diebold and K. Yilmaz. Macroeconomic volatility and stock market volatility, worldwide. Tech. rep. National Bureau of Economic Research, 2008.
- [7] S. Malik and M. K. Pitt, (2011) “Modelling stochastic volatility with leverage and jumps: A simulated maximum likelihood approach via particle filtering" Available at SSRN 1763783:
- [8] D. Buono, G. L. Mazzi, G. Kapetanios, M. Marcellino, and F. Papailias, (2017) “Big data types for macroeconomic nowcasting" Eurostat Review on National Accounts and Macroeconomic Indicator 1(2017): 93–145.
- [9] D. C. Broadstock and L. T. Cheng, (2019) “Timevarying relation between black and green bond price benchmarks: Macroeconomic determinants for the first decade" Finance research letters 29: 17–22. DOI: 10.1016/j.frl.2019.02.006.
- [10] Y.-r. Ma, Q. Ji, and J. Pan, (2019) “Oil financialization and volatility forecast: Evidence from multidimensional predictors" Journal of Forecasting 38(6): 564–581. DOI: 10.1002/for.2577.
- [11] U. Akkoc and I. Civcir, (2019) “Dynamic linkages between strategic commodities and stock market in Turkey: Evidence from SVAR-DCC-GARCH model" Resources Policy 62: 231–239. DOI: 10.1016/j.resourpol.2019.03.017.
- [12] J. Sun, K. Xiao, C. Liu, W. Zhou, and H. Xiong, (2019) “Exploiting intra-day patterns for market shock prediction: A machine learning approach" Expert Systems with Applications 127: 272–281. DOI: 10.1016/j.eswa.2019.03.006.
- [13] J. Wang, Y. Huang, F. Ma, and J. Chevallier, (2020) “Does high-frequency crude oil futures data contain useful information for predicting volatility in the US stock market? New evidence" Energy Economics 91: 104897.
- [14] X. Song, D. Kim, H. Yuan, X. Cui, Z. Lu, Y. Zhou, and Y. Wang, (2021) “Volatility analysis with realized GARCH-Itô models" Journal of Econometrics 222(1): 393–410.
- [15] C. Cerovecki, C. Francq, S. Hörmann, and J.-M. Zakoıan, (2019) “Functional GARCH models: The quasilikelihood approach and its applications" Journal of econometrics 209(2): 353–375.
- [16] J. Chen and D. N. Politis, (2019) “Optimal multi-stepahead prediction of ARCH/GARCH models and NoVaS transformation" Econometrics 7(3): 34.
- [17] X. Wang, X. Wang, B. Li, and Z. Bai, (2020) “The nonlinear characteristics of Chinese stock index futures yield volatility: Based on the high frequency data of CSI300 stock index futures" China Finance Review International 10(2): 175–196. DOI: 10.1108/CFRI-07-2018-0069.
- [18] Z. Gao, Y. He, and E. E. Kuruoglu. “A Hybrid Model Integrating LSTM and Garch for Bitcoin Price Prediction”. In: 2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP). IEEE. 2021, 1–6.
- [19] K.-C. Yao, H.-W. Hsueh, M.-H. Huang, and T.-C. Wu, (2022) “The role of GARCH effect on the prediction of air pollution" Sustainability 14(8): 4459.
- [20] B. Yasar, T. Martin, and T. Kiessling, (2020) “An empirical test of signalling theory" Management Research Review 43(11): 1309–1335. DOI: 10.1108/MRR-08- 2019-0338.
- [21] J. Dufitinema, (2021) “Forecasting the Finnish house price returns and volatility: a comparison of time series models" International Journal of Housing Markets and Analysis 15(1): 165–187. DOI: 10.1108/IJHMA12-2020-0145.
- [22] A. L. Hansen, (2021) “Yield curve volatility and macroeconomic risk" Available at SSRN 3943978:
- [23] A. A. Laghari, S. Yin, et al., (2022) “How to collect and interpret medical pictures captured in highly challenging environments that range from nanoscale to hyperspectral imaging" Current Medical Imaging 54(36582065): 1.
- [24] A. A. Laghari, Y. Sun, M. Alhussein, K. Aurangzeb, M. S. Anwar, and M. Rashid, (2023) “Deep residualdense network based on bidirectional recurrent neural network for atrial fibrillation detection" Scientific Reports 13(1): 15109.
- [25] S. Karim, A. Qadir, U. Farooq, M. Shakir, and A. A. Laghari, (2023) “Hyperspectral imaging: a review and trends towards medical imaging" Current medical imaging 19(5): 417–427.
- [26] S. Das, A. Adhikary, A. A. Laghari, and S. Mitra, (2023) “Eldo-care: Eeg with kinect sensor based telehealthcare for the disabled and the elderly" Neuroscience Informatics: 100130.
- [27] A. A. Laghari, S. Shahid, R. Yadav, S. Karim, A. Khan, H. Li, and Y. Shoulin, (2023) “The state of art and review on video streaming" Journal of High Speed Networks (Preprint): 1–26.
- [28] M. Andreani, V. Candila, G. Morelli, and L. Petrella, (2021) “Multivariate Analysis of Energy Commodities during the COVID-19 Pandemic: Evidence from a MixedFrequency Approach" Risks 9(8): 144.
- [29] J. Wu. “Corrected GARCH-DCC-MIDAS models in economics and finance". (phdthesis). Brunel University London, 2023.
- [30] Z. Wang, T. Xing, and X. Wang, (2024) “Economic uncertainty and stock market asymmetric volatility: analysis based on the asymmetric GARCH-MIDAS model" International Journal of Emerging Markets:
- [31] X. Li, C. Ye, M. A. Bhuiyan, and S. Huang, (2024) “Volatility forecasting with an extended GARCH-MIDAS approach" Journal of Forecasting 43(1): 24–39.
- [32] R. F. Engle, E. Ghysels, and B. Sohn, (2013) “Stock market volatility and macroeconomic fundamentals" Review of Economics and Statistics 95(3): 776–797. DOI: 10.1162/REST_a_00300.
- [33] R. Colacito, R. F. Engle, and E. Ghysels, (2011) “A component model for dynamic correlations" Journal of Econometrics 164(1): 45–59.
- [34] A. W. Ayele, E. Gabreyohannes, and H. Edmealem, (2020) “Generalized autoregressive conditional heteroskedastic model to examine silver price volatility and its macroeconomic determinant in Ethiopia market" Journal of Probability and Statistics 2020: 1–10.
- [35] L. Wen, C. Liu, H. Song, and H. Liu, (2021) “Forecasting tourism demand with an improved mixed data sampling model" Journal of Travel Research 60(2): 336–353.
- [36] M. S. Error, (2010) “Mean squared error" MA: Springer US: 653–653.
- [37] T. Chai and R. R. Draxler, (2014) “Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature" Geoscientific model development 7(3): 1247–1250. DOI: 10.5194/gmd-7-1247-2014.
- [38] C.-H. Chen, W.-C. Yu, and E. Zivot, (2012) “Predicting stock volatility using after-hours information: Evidence from the NASDAQ actively traded stocks" International Journal of Forecasting 28(2): 366–383. DOI: 10.1016/j.ijforecast.2011.04.005.
- [39] R. W. Wedderburn, (1974) “Quasi-likelihood functions, generalized linear models, and the Gauss—Newton method" Biometrika 61(3): 439–447. DOI: 10.1093/ biomet/61.3.439.
- [40] C. W. Chong, M. I. Ahmad, and M. Y. Abdullah, (1999) “Performance of GARCH models in forecasting stock market volatility" Journal of forecasting 18(5): 333–343.