Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Can Wang1 and Bensheng Xu2This email address is being protected from spambots. You need JavaScript enabled to view it.

1School of Mechanical Engineering, Guilin University of Aerospace Technology, Guilin 541004, Guangxi, China

2School of Aeronautics and Astronautics, Guilin University of Aerospace Technology, Guilin 541004, Guangxi, China


 

 

Received: April 23, 2024
Accepted: August 12, 2024
Publication Date: September 25, 2024

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202507_28(7).0001  


Understanding the vibrational behavior of bars is crucial in engineering structures due to their extensive use in mechanical applications. Hence, exploring the longitudinal vibrations of rods under different support conditions, particularly in the presence of cracks, holds significant importance. This study examines the vibrations of a viscoelastic rod containing a crack exposed to a magnetic field. The crack is modeled as a reduction in local stiffness, with a novel approach introduced by treating the crack as viscoelastic. The motion equations are developed by utilizing Newton’s second law and considering structural damping. Boundary conditions and compatibility conditions at the crack location are used to extract the eigenvalue problem. Natural frequencies, influenced by boundary conditions and geometric properties such as crack position and depth, are determined from the solution. Validation of this method is performed by comparing results with existing literature, demonstrating satisfactory accuracy. Additionally, the effect of various parameters on the dynamic features of the rod is investigated.


Keywords: Axial dynamics, viscoelastic rods, cracks, magnetic field, structural damping, natural frequencies, boundary conditions


  1. [1] T. Pourreza, A. Alijani, V. A. Maleki, and A. Kazemi, (2022) “The effect of magnetic field on buckling and nonlinear vibrations of Graphene nanosheets based on nonlocal elasticity theory" International Journal of Nano Dimension 13(1): 54–70. DOI: 10.22034/ijnd.2022.683988.
  2. [2] M. Hoseinzadeh, R. Pilafkan, and V. A. Maleki, (2023) “Size-dependent linear and nonlinear vibration of functionally graded CNT reinforced imperfect microplates submerged in fluid medium" Ocean Engineering 268: 113257. DOI: 10.1016/j.oceaneng.2022.113257.
  3. [3] M. Fallah and V. A. Maleki, (2021) “Piezoelectric energy harvesting using a porous beam under fluid-induced vibrations" Amirkabir Journal of Mechanical Engineering 53: 4633–4648. DOI: 10.22060/mej.2021.18200.6780.
  4. [4] E. Akdeniz and H. Arslan, (2023) “A new design of boring bar using TiNi3 alloy to reduce vibration in turning operations" Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 237: 105–121. DOI: 10.1177/09544054221104607.
  5. [5] T. T. Hai, K. Nguyen, and P. T. B. Lien, (2019) “Characteristic equation for antiresonant frequencies of multiple cracked bars and application for crack detection" Nondestructive Testing and Evaluation: DOI: 10.1080/10589759.2019.1605604.
  6. [6] T. L. Anderson and T. L. Anderson. Fracture mechanics: fundamentals and applications. CRC press, 2005. DOI: 10.1201/9781420058215.
  7. [7] J.-C. Hsu, H.-L. Lee, and W.-J. Chang, (2011) “Longitudinal vibration of cracked nanobeams using nonlocal elasticity theory" Current Applied Physics 11: 1384–1388. DOI: 10.1016/j.cap.2011.04.026.
  8. [8] N. Satish, S. Narendar, and K. B. Raju, (2017) “Magnetic field and surface elasticity effects on thermal vibration properties of nanoplates" Composite Structures 180: 568–580. DOI: 10.1016/j.compstruct.2017.08.028.
  9. [9] D. Karliˇci´c, M. Caji´c, T. Murmu, P. Kozi´c, and S. Adhikari, (2015) “Nonlocal effects on the longitudinal vibration of a complex multi-nanorod system subjected to the transverse magnetic field" Meccanica 50: 1605–1621. DOI: 10.1007/s11012-015-0111-6.
  10. [10] C. Li, X. Yang, Y. Li, and X. Ge. “Wind vibration responses of structure with generalized Maxwell model viscoelastic dampers”. In: Structures. 47. Elsevier. 2023, 425–433. DOI: 10.1016/j.istruc.2022.10.127.
  11. [11] T. Murmu, M. A. McCarthy, and S. Adhikari, (2012) “Vibration response of double-walled carbon nanotubes subjected to an externally applied longitudinal magnetic field: a nonlocal elasticity approach" Journal of Sound and Vibration 331: 5069–5086. DOI: 10.1016/j.jsv.2012.06.005.
  12. [12] M. Loghmani, M. R. H. Yazdi, and M. N. Bahrami, (2018) “Longitudinal vibration analysis of nanorods with multiple discontinuities based on nonlocal elasticity theory using wave approach" Microsystem Technologies 24: 2445–2461. DOI: 10.1007/s00542-017-3619-y.
  13. [13] G. Tan, Z. Zhu, W. Wang, and Y. Cheng, (2018) “Free vibration analysis of a uniform continuous beam with an arbitrary number of cracks and spring-mass systems" Arabian Journal for Science and Engineering 43: 4619–4634. DOI: 10.1007/s13369-017-2933-0.
  14. [14] M. Rezaee and R. Hassannejad, (2010) “Damped free vibration analysis of a beam with a fatigue crack using energy balance method" International Journal of the Physical Sciences 5: 793–803. DOI: 10.5897/IJPS.9000149.
  15. [15] M. Rezaee and V. A. Maleki, (2019) “An analytical method for dynamic analysis of fluid conveying viscoelastic pipes b" Iranian Journal of Mechanical Engineering Transactions of ISME 21: 6–29. DOI: 10.1001.1.25384775.1398.21.1.1.6.
  16. [16] M. Rezaee and H. Fekrmandi, (2012) “A theoretical and experimental investigation on free vibration vehavior of a cantilever beam with a breathing crack" Shock and Vibration 19: 175–186. DOI: 10.3233/SAV-2011-0622.
  17. [17] M. Kharazan, S. Irani, M. A. Noorian, and M. R. Salimi, (2021) “Effect of a breathing crack on the damping changes in nonlinear vibrations of a cracked beam: Experimental and theoretical investigations" Journal of Vibration and Control 27: 2345–2353. DOI: 10.1177/1077546320960312.
  18. [18] Y. Pala and Ç. Kahya, (2022) “A Method Based on Riccati Equation for the Vibration Analysis of Rods with Variable Cross-Sections" International Journal of Structural Stability and Dynamics 22: 2250123. DOI: 10.1142/S0219455422501231.
  19. [19] F. Chalah, L. Chalah-Rezgui, S. E. Djellab, and A. Bali, (2020) “Axial Fundamental Vibration Frequency of a Tapered Rod with a Linear Cross-Sectional Area Variation" Engineering Design Applications III: Structures, Materials and Processes: 133–151. DOI: 10.1007/978-3-030-39062-4_13.
  20. [20] B. S. Roody, A. R. Fotuhi, and M. M. Jalili, (2018) “Nonlinear longitudinal forced vibration of a rod undergoing finite strain" Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 232: 2229–2243. DOI: 10.1177/0954406217716957.
  21. [21] M. A. Il’gamov, (2017) “Longitudinal vibrations of a bar with incipient transverse cracks" Mechanics of Solids 52: 18–24. DOI: 10.3103/S0025654417010034.
  22. [22] U. Güven, (2016) “Longitudinal vibration of cracked beams under magnetic field" Mechanical Systems and Signal Processing 81: 308–317. DOI: 10.1016/j.ymssp.2016.03.012.
  23. [23] M. Pourjafari, A. R. Fotuhi, and M. M. Jalili, (2019) “Longitudinal Free Vibrations of a Rod with Variable CrossSection Undergoing Finite Strain" Modares Mechanical Engineering 19: DOI: https://www.sid.ir/paper/179669/en.
  24. [24] S. Narendar, (2016) “Wave dispersion in functionally graded magneto-electro-elastic nonlocal rod" Aerospace Science and Technology 51: 42–51. DOI: 10.1016/j.ast.2016.01.012.
  25. [25] A. M. Baghestani, S. J. Fariborz, and S. M. Mousavi, (2014) “Low-frequency free vibration of rods with finite strain" Journal of Applied Nonlinear Dynamics 3: 85–93. DOI: 10.5890/JAND.2014.03.007.
  26. [26] S. M. Mousavi and S. Fariborz. “Free vibration of a rod undergoing finite strain”. In: Journal of Physics: Conference Series. 382. 1. IOP Publishing. 2012, 012011. DOI: 10.1088/1742-6596/382/1/012011.
  27. [27] Q. S. Li, G. Q. Li, and D. K. Liu, (2000) “Exact solutions for longitudinal vibration of rods coupled by translational springs" International Journal of Mechanical Sciences 42: 1135–1152. DOI: 10.1016/S0020-7403(99)00038-7.
  28. [28] A. H. Nayfeh, (1975) “Finite-amplitude longitudinal waves in non-uniform bars" Journal of Sound and Vibration 42: 357–361. DOI: 10.1016/0022-460X(75)90250-3.
  29. [29] T. W. McDowell, X. S. Xu, C. Warren, D. E. Welcome, and R. G. Dong, (2018) “The effects of feed force on rivet bucking bar vibrations" International journal of industrial ergonomics 67: 145–158. DOI: 10.1016/j.ergon.2018.05.011.
  30. [30] S. H. Moghtaderi, S. A. Faghidian, and M. Asghari, (2023) “Nonlinear vibrations of gradient and nonlocal elastic nano-bars" Mechanics Based Design of Structures and Machines 51: 1316–1334. DOI: 10.1080/15397734.2020.1864640.
  31. [31] F. Soares, J. Antunes, and V. Debut, (2021) “Multimodal tuning of vibrating bars with simplified undercuts using an evolutionary optimization algorithm" Applied Acoustics 173: 107704. DOI: 10.1016/j.apacoust.2020.107704.
  32. [32] M. Rezaee and V. A. Maleki, (2013) “A new analytical method to investigate the vibrational behavior of fluid embedded pipe" Iranian Journal of Mechanical Engineering Transactions of ISME 15: 6–20. DOI: 10.1001.1.25384775.1392.15.1.1.4.
  33. [33] M. Rezaee and V. A. Maleki, (2017) “Vibration analysis of fluid conveying viscoelastic pipes rested on non-uniform winkler elastic foundation" Modares Mechanical Engineering 16: 87–94. DOI: https://mme.modares.ac.ir/browse.php?a_id=5625&sid=15&slc_lang=en.
  34. [34] M. Rezaee and V. A. Maleki, (2012) “Vibration analysis of a cracked pipe conveying fluid" Modares Mechanical Engineering 12: DOI: https://www.sid.ir/paper/179559/en.
  35. [35] M. Nasrabadi, A. V. Sevbitov, V. A. Maleki, N. Akbar, and I. Javanshir, (2022) “Passive fluid-induced vibration control of viscoelastic cylinder using nonlinear energy sink" Marine Structures 81: 103116. DOI: 10.1016/j. marstruc.2021.103116.
  36. [36] T. Hai, K. Nguyen, and P. Lien, (2019) “Characteristic equation for antiresonant frequencies of multiple cracked bars and application for crack detection" Nondestructive Testing and Evaluation: DOI: 10.1080/10589759.2019.1605604.


    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.