- [1] S. Ahmad, (2003) “Reinforcement corrosion in concrete structures, its monitoring and service life prediction–a review" Cement and Concrete Composites 25: 459–471. DOI: 10.1016/s0958-9465(02)00086-0.
- [2] Q. T. Phung, N. Maes, G. De Schutter, D. Jacques, and G. Ye, (2013) “Determination of water permeability of cementitious materials using a controlled constant flow method" Construction and Building Materials 47: 1488–1496. DOI: 10.1016/j.conbuildmat.2013.06.074.
- [3] M.Alexander and H. Beushausen, (2019) “Durability, service life prediction, and modelling for reinforced con crete structures– review and critique" Cement and Con crete Research 122: 17–29. DOI: 10.1016/j.cemconres.2019.04.018.
- [4] C.E.T.Balestra, T. A. Reichert, A. L. P. Vizzotto, W. A. Pansera, and G. Savaris, (2021) “General model for ser vice life analysis of reinforced concrete structures subject to chloride penetration" Construction and Building Materials 305: 124727. DOI: 10.1016/j.conbuildmat. 2021.124727.
- [5] Q. Truong, C. El Soueidy, Y. Li, and E. Bastidas Arteaga, (2022) “Probability-based maintenance mod eling and planning for reinforced concrete assets subjected to chloride ingress" Journal of Building Engineering 54: 104675. DOI: 10.1016/j.jobe.2022.104675.
- [6] T. T. Tran, D. T. Pham, M. N. Vu, V. Q. Truong, X. B. Ho, N. L. Tran, T. Nguyen-Sy, and Q. D. To, (2021) “Relation between water permeability and chloride diffu sivity of concrete under compressive stress: Experimental investigation and mesoscale lattice modelling" Construc tion and Building Materials 267: DOI: 10.1016/j.conbuildmat.2020.121164.
- [7] V. Nguyen, T. T. Tran, X. T. Nguyen, T. Tran, and V. Truong, (2023) “Effect of Natural Pozzolanic Additive on Strength and Durability of Concrete Immersed in Sea water" Iranian Journal of Science and Technology, Transactions of Civil Engineering 47: 727–739. DOI: 10.1007/s40996-022-00961-3.
- [8] T. T. Tran, T. Tran, X. T. Nguyen, D. Nguyen, B. Vu, and V. Vo, (2022) “Influences of pre-bending load and corrosion degree of reinforcement on the loading capacity of concrete beams" Journal of the Mechanical Behav ior of Materials 31(1): 554–563. DOI: 10.1515/jmbm 2022-0061.
- [9] A.Poursaee. Corrosion of Steel in Concrete Structures. Woodhead Publishing series in civil and structural engineering number 61. Woodhead Publishing, Cam bridge, UK., 2016.
- [10] C. Nogueira, L. Yoshio, and E. Zacchei, (2023) “De terministic and probabilistic approaches for corrosion in RCstructures: A direct proposed model to total service life predictions" Case Studies in Construction Materials: e01913. DOI: 10.1016/j.cscm.2023.e01913.
- [11] R. Rodrigues, S. Gaboreau, J. Gance, I. Ignatiadis, and S. Betelu, (2021) “Reinforced concrete structures: Areview of corrosion mechanisms and advances in elec trical methods for corrosion monitoring" Construction and Building Materials 269: 121240. DOI: 10.1016/j.conbuildmat.2020.121240.
- [12] Z. Zhao and L. Fu, (2018) “The probability distribution of pitting for accelerated corrosion reinforcement" Case Studies in Construction Materials 9: e00193. DOI: 10.1016/j.cscm.2018.e00193.
- [13] K. Tuutti, (1982) “Corrosion of Steel in Concrete" Ph.D. Dissertation, Swedish Cement and Concrete Re search Institute (CBI), Stockholm:
- [14] A. Saetta, R. Scotta, and R. Vitaliani, (1993) “Analysis of Chloride Diffusion into Partially Saturated Concrete" ACIMaterials Journal 90(5): 441–451. DOI: 10.14359/3874.
- [15] M. T. Liang, K. L. Wang, and C. H. Liang, (1999) “Service life prediction of reinforced concrete structures" Cement and Concrete Research 29(9): 1411–1418. DOI: 10.1016/s0008-8846(99)00109-x.
- [16] A. A. Sagüés, (2003) “Modeling the Effects of Corrosion on the Lifetime of Extended Reinforced Concrete Struc tures" Corrosion 59(10): DOI: 10.5006/1.3287706.
- [17] B. Li, L. Cai, and W. Zhu, (2017) “Predicting Service Life of Concrete Structure Exposed to Sulfuric Acid Envi ronment by Grey System Theory" International Journal of Civil Engineering 16(9): 1017–1027. DOI: 10.1007/s40999-017-0251-2.
- [18] W.Z.Taffese and E. Sistonen, (2017) “Machine learn ing for durability and service-life assessment of reinforced concrete structures: Recent advances and future direc tions" Automation in Construction 77: 1–14. DOI: 10.1016/j.autcon.2017.01.016.
- [19] A. Dey, G. Miyani, and A. Sil, (2019) “Application of artificial neural network (ANN) for estimating reliable service life of reinforced concrete (RC) structure bookkeep ing factors responsible for deterioration mechanism" Soft Computing 24: 2109–2123. DOI: 10.1007/s00500-019 04042-y.
- [20] I. Oslakovic, D. Bjegovic, and D. Mikulic, (2010) “Evaluation of service life design models on concrete struc tures exposed to marine environment" Materials and Structures 43: 1397–1412. DOI: 10.1617/s11527-010 9590-z.
- [21] M. Thomas and E. Bentz, (2001) “LIFE-365, service life prediction model, computer program for predicting the service life and life-cycle costs of reinforced concrete exposed to chlorides" University of Toronto:
- [22] C. Edvardsen, S. Engelund, L. Mohr, et al., (2000) “General Guidelines for Durability Design and Redesign: DuraCrete-Probabilistic Performance Based Durability Design of Concrete Structures (contract BRPR-CT95 0132, Project BE95-1347)" CUR: Gouda, The Nether lands:
- [23] M.B.Anoop, B. K. Raghuprasad, and K. Balaji Rao, (2012) “A Refined Methodology for Durability-Based Ser vice Life Estimation of Reinforced Concrete Structural Elements Considering Fuzzy and Random Uncertainties" Computer-Aided Civil and Infrastructure Engineer ing 27: 170–186. DOI: 10.1111/j.1467-8667.2011.00730.x.
- [24] L. Wang, Y. Ma, J. Zhang, and Y. Liu, (2013) “Prob abilistic Analysis of Corrosion of Reinforcement in RC Bridges Considering Fuzziness and Randomness" Jour nal of Structural Engineering 139: 1529–1540. DOI: 10.1061/(asce)st.1943-541x.0000738.
- [25] Y. Ma, Z. Guo, L. Wang, and J. Zhang, (2020) “Proba bilistic Life Prediction for Reinforced Concrete Structures Subjected to Seasonal Corrosion-Fatigue Damage" Jour nal of Structural Engineering 146: DOI: 10.1061/(asce)st.1943-541x.0002666.
- [26] R. E. Melchers and A. T. Beck. Structural reliability analysis and prediction. John wiley & sons, 2018.
- [27] R. Muigai, P. Moyo, and M. Alexander, (2012) “Dura bility design of reinforced concrete structures : a compari son of the use of durability indexes in the deemed-to-satisfy approach and the full-probabilistic approach" Materials and Structures 45: 1233–1244. DOI: 10.1617/s11527 012-9829-y.
- [28] ACI-365.1R-00, (2000) “Service-Life prediction- State-of the-Art report" American Concrete Institute, Detroit, USA:
- [29] L. Parameswaran, R. Kumar, and G. K. Sahu, (2008) “Effect of Carbonation on Concrete Bridge Service Life" Journal of Bridge Engineering 13: 75–82.
- [30] D. Voˇrechovská, B. Teplý, and M. Chromá, (2010) “Probabilistic Assessment of Concrete Structure Durabil ity under Reinforcement Corrosion Attack" Journal of Performance of Constructed Facilities 24(6): 571–597.
- [31] W.Chai, W. Li, and H. Ba, (2011) “Experimental study on predicting service life of concrete in the marine envi ronment" Open Civil Engineering Journal 5(3): 93 99.
- [32] W.M.ZhangandH.J.Ba,(2011)“Acceleratedlifetestof concrete in chloride environment" Journal of Materials in Civil Engineering 23(3): 330–334.
- [33] T. Siemes and S. Rostam, (1996) “Durable Safety and Serviceability- a Performance Based Design Format" Delft, Report of IABSE Colloquium: 41–50.
- [34] J. Crank. The mathematics of diffusion. Oxford Univer sity Press, Oxford, UK, 1975.
- [35] M.D.A.Thomas,M.H.Shehata,S.G.Shashiprakash, D. S. Hopkins, and K. Cail, (1999) “Use of ternary cementitious systems containing silica fume and fly ash in concrete" Cement and Concrete Research 29: 1207 1214. DOI: 10.1016/s0008-8846(99)00096-4.
- [36] P. S. Mangat and B. T. Molloy, (1994) “Prediction of long term chloride concentration in concrete" Materi als and Structures 27(6): 338–346. DOI: 10.1007/bf02473426.
- [37] A. Costa and J. Appleton, (1999) “Chloride penetration into concrete in marine environment—Part I: Main pa rameters affecting chloride penetration" Materials and Structures 32(4): 252–259. DOI: 10.1007/bf02479594.
- [38] A. Costa and J. Appleton, (1999) “Chloride penetration into concrete in marine environment—Part II: Prediction of long term chloride penetration" Materials and Struc tures 32(5): 354–359. DOI: 10.1007/bf02479627.
- [39] ASTM-C150/C150M-19, (2019) “Standard Specifica tion for Portland Cement" American Society for Test ing and Materials, USA:
- [40] ASTM-C33/C33M, (2018) “Standard Specification for Concrete Aggregates" American Society for Testing and Materials, USA:
- [41] ASTM-C136/C136M-19, (2019) “Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates" Amer ican Society for Testing and Materials, USA:
- [42] ASTM-C494/C494M-19, (2019) “Standard Specifica tion for Chemical Admixtures for Concrete" American Society for Testing and Materials, USA:
- [43] ASTM-C1240-20, (2020) “Standard Specification for Sil ica Fume Used in Cementitious Mixtures" American Society for Testing and Materials, USA:
- [44] ASTM-C1202-19, (2019) “Standard test method for elec trical indication of concrete’s ability to resist chloride ion penetration" American Society for Testing and Mate rials, USA:
- [45] T. T. Tran, X. T. Nguyen, and X. B. Ho. Effect of pre compressive stress on chloride permeability of concrete used antipermeable admixture. 2017.
- [46] N. S. Berke and M. C. Hicks. “Estimating the life cycle of reinforced concrete decks and marine piles using laboratory diffusion and corrosion data”. In: 1992, 207–231.
- [47] M. Enright and M. Frangopol, (1998) “Probabilistic analysis of resistance degradation of reinforced concrete bridge beams under corrosion" Engineering Structures 20: 960–971. DOI: 10.1016/S0141-0296(97)00190-9.
- [48] M. Enright and M. D. Frangopol, (1999) “Condi tion Prediction of Deteriorating Concrete Bridges Using Bayesian Updating" Journal of Structural Engineer ing 125(10): 1118–1125. DOI: 10.1061/(ASCE)0733 9445(2001)127:5(594).
- [49] M. G. Stewart and D. V. Rosowsky, (1998) “Time dependent reliability of deteriorating reinforced concrete bridge decks" Structural Safety 20: 91–109. DOI: 10.1016/S0167-4730(97)00021-0.
- [50] K. A. T. Vu and M. G. Stewart, (2000) “Structural reliability of concrete bridges including improved chloride induced corrosion models" Structural Safety 22: 313 333. DOI: 10.1016/S0167-4730(00)00018-7.
- [51] M. Yanaka, S. H. Ghasemi, and A. Nowak, (2016) “Reliability-based and life-cycle cost-orienteddesign recom mendations for prestressed concretebridge girders" Struc tural Concrete 17(5): 836–847. DOI: 10.1002/suco. 201500197.
- [52] AASHTOLRFDBridgeDesign Specifications, 9th Edi tion. 2020.
- [53] Eurocode- Basis of structural design. 2002.
- [54] Steel, concrete and composite bridges- Part 1: General statement. 1988.
- [55] P. Schiessl and T. G. M. C. for Service Life Design of Concrete Structures International Federation for Structural Concrete. Model code for service life design. f ib, CEB-FIP, 2006.