Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Hikmat Z. NeimaThis email address is being protected from spambots. You need JavaScript enabled to view it., Rana M. Ghadban, and Mohamed A. Abdulhamed

College of CSIT, University of Basrah, Basrah 61004, Iraq


 

Received: August 28, 2025
Accepted: November 8, 2025
Publication Date: November 30, 2025

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.2026.26030006  


Retinopathy of Prematurity (ROP) remains one of the leading causes of preventable childhood blindness, particularly in low-resource settings where specialist access is limited. Although deep learning has improved automated ROP detection, most existing models rely solely on retinal images and function as opaque black boxes, limiting clinical trust and real world adoption. This study proposes a robust and trustworthy ROP diagnosis framework that combines Vision-Language Modeling (VLM) and Explainable AI. The pipeline fuses high-resolution wide-field retinal fundus images with neonatal NICU text records using a lightweight Vision Transformer, a clinical text encoder, and a neuro-symbolic reasoning layer for human-in-the-loop corrections. A key technical enhancement applies Weighted-Fuzzy Histogram Equalization (WFHE) to boost local vascular contrast while avoiding artifacts, outperforming Contrast Limited Adaptive Histogram Equalization CLAHE in highlighting subtle pathological cues. Evaluations on benchmark ROP datasets, paired with semi-structured NICU reports, demonstrate that the multimodal system improves diagnostic AUC by 7-9 % compared to image-only baselines, and delivers dual explanations through Grad-CAM heatmaps and SHAP token-level attributions. Structured clinician feedback confirms that the system’s explanations align with expert annotations and improve interpretability and trust. This framework demonstrates that integrating WFHE, Vision-Language fusion, and multi-level explainability can enable transparent, deployable AI for equitable neonatal vision care.


Keywords: Multimodal fusion; Neonatal retinal screening; Neuro-symbolic reasoning; Weighted-Fuzzy Histogram Equalization (WFHE)


  1. [1] S. Wang, J. Liu, X. Zhang, Y. Liu, J. Li, H. Wang, X. Luo, S. Liu, L. Liu, and J. Zhang, (2024) “Global, Regional and National Burden of Retinopathy of Prematurity in Childhood and Adolescence: A Spatiotemporal Analysis Based on the Global Burden of Disease Study 2019" BMJ Paediatrics Open 8(1): e002267. DOI: 10.1136/bmjpo-2023-002267.
  2. [2] R.-H. Zhang, Y.-M. Liu, L. Dong, H.-Y. Li, Y.-F. Li, W.-D. Zhou, H.-T. Wu, Y.-X. Wang, and W.-B. Wei, (2022) “Prevalence, Years Lived With Disability, and Time Trends for 16 Causes of Blindness and Vision Impairment: Findings Highlight Retinopathy of Prematurity" Fron tiers in Pediatrics 10: DOI: 10.3389/fped.2022.735335.
  3. [3] J. Wang, J. Ji, M. Zhang, J.-W. Lin, G. Zhang, W. Gong, L.-P. Cen, Y. Lu, X. Huang, D. Huang, T. Li, T. K. Ng, and C. P. Pang, (2021) “Automated Explainable Multidimensional Deep Learning Platform of Retinal Images for Retinopathy of Prematurity Screening" JAMA Network Open4(5): e218758. DOI: 10.1001/jamanetworkopen.2021.8758.
  4. [4] A. Nair, R. El Ballushi, B. Z. Anklesaria, M. Kamali, M. Talat, and T. Watts, (2022) “A Review on the Incidence and Related Risk Factors of Retinopathy of Prematurity Across Various Countries" Cureus: DOI: 10.7759/cureus.32007.
  5. [5] Q. Wu, Y. Hu, Z. Mo, R. Wu, X. Zhang, Y. Yang, B. Liu, Y. Xiao, X. Zeng, Z. Lin, Y. Fang, Y. Wang, X. Lu, Y. Song, W. W. Y. Ng, S. Feng, and H. Yu, (2022) “Development and Validation of a Deep Learning Model to Predict the Occurrence and Severity of Retinopathy of Prematurity" JAMA Network Open 5(6): e2217447. DOI: 10.1001/jamanetworkopen.2022.17447.
  6. [6] J. Y. Tang, M. P. Marinkovich, E. Lucas, E. Gorell, A. Chiou, Y. Lu, J. Gillon, D. Patel, and D. Rudin, (2021) “A Systematic Literature Review of the Disease Burden in Patients with Recessive Dystrophic Epidermolysis Bullosa" Orphanet Journal of Rare Diseases 16(1): 175. DOI: 10.1186/s13023-021-01811-7.
  7. [7] M. Zhang, C. Qin, and F. Qiang, (2024) “Leveraging Artificial Intelligence to Assess Physicians’ Willingness to Share Electronic Medical Records in a Hierarchical Diagnostic Ecosystem" Journal of Artificial Intelligence Research 1(1): 27–35. DOI: 10.70891/JAIR.2024.100024.
  8. [8] Z. A. Shaikh, A. A. Khan, L. Teng, A. A. Wagan, and A. A. Laghari, (2022) “BIoMT Modular Infrastructure: The Recent Challenges, Issues, and Limitations in Blockchain Hyperledger-Enabled E-Healthcare Application" Wireless Communications and Mobile Computing 2022(1): 3813841. DOI: 10.1155/2022/3813841.
  9. [9] A. Bai, C. Carty, and S. Dai, (2022) “Performance of Deep-Learning Artificial Intelligence Algorithms in Detecting Retinopathy of Prematurity: A Systematic Re view" Saudi Journal of Ophthalmology 36(3): 296. DOI: 10.4103/sjopt.sjopt_219_21.
  10. [10] J. Zhang, Y. Liu, T. Mitsuhashi, and T. Matsuo, (2021) “Accuracy of Deep Learning Algorithms for the Diagnosis of Retinopathy of Prematurity by Fundus Images: A Systematic Review and Meta-Analysis" Journal of Ophthalmology 2021(1): 8883946. DOI: 10.1155/2021/ 8883946.
  11. [11] L. F. Nakayama, W. G. Mitchell, L. Z. Ribeiro, R. G. Dychiao, W. Phanphruk, L. A. Celi, K. Kalua, A. P. D. Santiago, C. V. S. Regatieri, and N. S. B. Moraes, (2023) “Fairness and Generalisability in Deep Learning of Retinopathy of Prematurity Screening Algorithms: A Literature Review" BMJ Open Ophthalmology 8(1): DOI: 10.1136/bmjophth-2022-001216.
  12. [12] P.Rashidian,S.Karami,andS.A.Salehi,(2025)“ARe view on Retinopathy of Prematurity" Medical Hypothesis, Discovery and Innovation in Ophthalmology 13(4): 201–212. DOI: 10.51329/mehdiophthal1511.
  13. [13] Z. Qin, H. Yi, Q. Lao, and K. Li, (2022) “Medical image understanding with pretrained vision language models: A comprehensive study" arXiv preprint arXiv:2209.15517:
  14. [14] M. Hu, J. Qian, S. Pan, Y. Li, R. L. Qiu, and X. Yang, (2024) “Advancing medical imaging with language models: featuring a spotlight on ChatGPT" Physics in Medicine & Biology 69(10): 10TR01. DOI: 10.1088/1361-6560/ad387d.
  15. [15] Y. Bazi, M. M. A. Rahhal, L. Bashmal, and M. Zuair, (2023) “Vision–Language Model for Visual Question Answering in Medical Imagery" Bioengineering 10(3): 380. DOI: 10.3390/bioengineering10030380.
  16. [16] P. Chambon, C. Bluethgen, C. P. Langlotz, and A. Chaudhari, (2022) “Adapting Pretrained Vision Language Foundational Models to Medical Imaging Domains" arXiv preprint arXiv:2210.04133 (arXiv:2210.04133): DOI: 10.48550/arXiv.2210.04133.
  17. [17] A. Lozano, M. W. Sun, J. Burgess, L. Chen, J. J. Nirschl, J. Gu, I. Lopez, J. Aklilu, A. Rau, A. W. Katzer, et al. “BIOMEDICA: An Open Biomedi cal Image-Caption Archive, Dataset, and Vision Language Models Derived from Scientific Litera ture”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2025, 19724 19735.
  18. [18] K. Poudel, M. Dhakal, P. Bhandari, R. Adhikari, S. Thapaliya, and B. Khanal, (2023) “Exploring transfer learning in medical image segmentation using vision language models" arXiv preprint arXiv:2308.07706 (arXiv:2308.07706): DOI: 10.48550/arXiv.2308.07706.
  19. [19] V. Nath, W. Li, D. Yang, A. Myronenko, M. Zheng, Y. Lu, Z. Liu, H. Yin, Y. M. Law, Y. Tang, et al. “VILA M3: Enhancing Vision-Language Models with Med ical Expert Knowledge”. In: Proceedings of the Computer Vision and Pattern Recognition Conference. 2025, 14788–14798.
  20. [20] S. Yin, H. Li, L. Teng, A. A. Laghari, A. Almadhor, M. Gregus, and G. A. Sampedro, (2024) “Brain CT Image Classification Based on Mask RCNN and Attention Mechanism" Scientific Reports 14(1): 29300. DOI: 10.1038/s41598-024-78566-1.
  21. [21] T. Shahzad, M. Saleem, M. S. Farooq, S. Abbas, M. A. Khan, and K. Ouahada, (2024) “Developing a Trans parent Diagnosis Model for Diabetic Retinopathy Using Explainable AI" IEEE Access 12: 149700–149709. DOI: 10.1109/ACCESS.2024.3475550.
  22. [22] S. Abbas, A. Qaisar, M. S. Farooq, M. Saleem, M. Ahmad, and M.A.Khan, (2024) “Smart Vision Transparency: Efficient Ocular Disease Prediction Model Using Explainable Artificial Intelligence" Sensors 24(20): 6618. DOI: 10.3390/s24206618.
  23. [23] N. Sureja, V. Parikh, A. Rathod, P. Patel, H. Patel, andH.Sureja, (2025) “Explainable Artificial Intelligence Based Deep Learning for Retinal Disease Detection" Journal of Electronics, Electromedical Engineering, and Medical Informatics 7(2): 471–483. DOI: 10.35882/jeeemi.v7i2.717.
  24. [24] N. Afreen and R. Aluvalu, (2024) “Glaucoma Detection Using Explainable AI and Deep Learning." EAI Endorsed Transactions on Pervasive Health & Technology 10(1): DOI: 10.4108/eetpht.10.5658.
  25. [25] M.S. Ali and M.Islam, (2023) “A hyper-tuned Vision Transformer model with Explainable AI for Eye disease detection and classification from medical images" BS the sis, Faculty of Engineering and Technology Islamic University:
  26. [26] Y. Zhong, R. Jin, X. Li, and Q. Dou, (2025) “Can Common VLMsRival Medical VLMs? Evaluation and Strategic Insights" arXiv preprint arXiv:2506.17337: DOI: https: //doi.org/10.48550/arXiv.2506.17337.
  27. [27] J. Chen, D. Yang, Y. Jiang, M. Li, J. Wei, X. Hou, and L. Zhang, (2024) “Efficiency in focus: Layernorm as a catalyst for fine-tuning medical visual language pre trained models" arXiv preprint arXiv:2404.16385: DOI: 10.48550/arXiv.2404.16385.
  28. [28] M. Mistretta and A. D. Bagdanov, (2024) “Re-tune: Incremental fine tuning of biomedical vision-language models for multi-label chest x-ray classification" arXiv preprint arXiv:2410.17827: DOI: 10.48550/arXiv.2410.17827.
  29. [29] X. Han, L. Jin, X. Ma, and X. Liu, (2024) “Light-weight fine-tuning method for defending adversarial noise in pre trained medical vision-language models" arXiv preprint arXiv:2407.02716: DOI: 10.48550/arXiv.2407.02716.
  30. [30] J. Pan, C. Liu, J. Wu, F. Liu, J. Zhu, H. B. Li, C. Chen, C. Ouyang, and D. Rueckert. “MedVLM-R1: Incen tivizing Medical Reasoning Capability of Vision Language Models (VLMs) via Reinforcement Learn ing”. In: Medical Image Computing and Computer Assisted Intervention– MICCAI 2025. 2025, 337–347. DOI: 10.1007/978-3-032-04981-0_32.
  31. [31] A. Farrag, G. Gad, Z. M. Fadlullah, M. M. Fouda, and M. Alsabaan, (2023) “An Explainable AI System for Medical Image Segmentation With Preserved Local Resolution: Mammogram Tumor Segmentation" IEEE Access 11: 125543–125561. DOI: 10.1109/ACCESS.2023.3330465.
  32. [32] A. S. Farhan, M. Khalid, and U. Manzoor, (2025) “XAI-MRI: AnEnsembleDual-Modality Approach for 3D Brain Tumor Segmentation Using Magnetic Resonance Imaging" Frontiers in Artificial Intelligence 8: DOI: 10.3389/frai.2025.1525240.
  33. [33] R. Gipiškis, (2024) “XAI-driven Model Improvements in Interpretable Image Segmentation" xAI-2024 Late breaking work, demos and doctoral consortium joint proceedings, Valletta, Malta, July 17-19, 2024. 369–376.
  34. [34] N. Sritharan, N. Gnanavel, P. Inparaj, D. Meedeniya, and P. Yogarajah, (2025) “Explainable Artificial Intelligence Driven Segmentation for Cervical Cancer Screening" IEEE Access 13: 71306–71322. DOI: 10.1109/ACCESS.2025.3561178.
  35. [35] P. K. Rao, S. Chatterjee, M. Janardhan, K. Nagaraju, S. B. Khan, A. Almusharraf, and A. I. Alharbe, (2023) “Optimizing Inference Distribution for Efficient Kidney Tumor Segmentation Using a UNet-PWP Deep-Learning Model with XAI on CT Scan Images" Diagnostics 13(20): 3244. DOI: 10.3390/diagnostics13203244.
  36. [36] F. Motzkus, (2023) “xAI-based Model Improvement for Detection and Image Segmentation": DOI: 10.18420/KI2023-DC-08.
  37. [37] M.H.Alikhani, (2025) “Synthetic reasoning-Designing AI Architectures Beyond Neural Networks with Hybrid Neuro-Symbolic Systems" Available at SSRN 5226493: DOI: 10.2139/ssrn.5226493.
  38. [38] Q. Lu, R. Li, E. Sagheb, A. Wen, J. Wang, L. Wang, J. W. Fan, and H. Liu, (2025) “Explainable Diagnosis Prediction through Neuro-Symbolic Integration" AMIA Summits on Translational Science Proceedings 2025: 332–341. DOI: 10.1109/ACCESS.2025.3529133.
  39. [39] Y. Chudasama, H. Huang, D. Purohit, and M.-E. Vi dal, (2025) “Towards interpretable hybrid ai: Integrating knowledge graphs and symbolic reasoning in medicine" IEEE Access 13: 39489–39509. DOI: 10.1109/ACCESS. 2025.3529133.
  40. [40] S. Bangalore Vijayakumar, K. T. Chitty-Venkata, K. Arya, and A. K. Somani, (2024) “Convision benchmark: A contemporary framework to benchmark cnn and vit models" AI 5(3): 1132–1171. DOI: 10.3390/ai5030056.
  41. [41] Y. Yang, L. Zhang, L. Ren, and X. Wang, (2023) “MMViT-Seg: A Lightweight Transformer and CNN Fusion Network for OVID-19 Segmentation" Computer Methods and Programs in Biomedicine 230: 107348. DOI: 10.1016/j.cmpb.2023.107348.
  42. [42] H. Wang, X. Dai, S. Ning, J. Ye, G. Srivastava, F. Khan, S. T. U. Shah, and Y. Pan, (2025) “TinyVit-LightGBM: A Lightweight and Smart Feature Fusion Framework for IoMT-based Cancer Diagnosis" Information Fusion 122: 103180. DOI: 10.1016/j.inffus.2025.103180.
  43. [43] P. Li and J. Liu, (2022) “Early Diagnosis and Quantitative Analysis of Stages in Retinopathy of Prematurity Based on Deep Convolutional Neural Networks" Translational Vision Science & Technology 11(5): 17. DOI: 10.1167/tvst.11.5.17.
  44. [44] M.Mehmood,M.Alsharari,S.Iqbal,I.Spence,andM. Fahim. “Retina Lite Net: A Lightweight Transformer Based CNN for Retinal Feature Segmentation”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024, 2454–2463.
  45. [45] D. R. K. Dhanaraj and A. Kakade, (2024) “Optimized Spatial Automatic Color Enhancement Technique: A Novel Approach for Color Restoration in Retinopathy of Prematurity (Rop) Retinal Images" Available at SSRN 4965374 (4965374): DOI: 10.2139/ssrn.4965374.
  46. [46] F. Parodi, J. K. Matelsky, A. Regla-Vargas, E. E. Foglia, C. Lim, D. Weinberg, K. P. Kording, H. M. Herrick, and M. L. Platt. “Vision-Language Models for De coding Provider Attention During Neonatal Resus citation”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024, 343–353.
  47. [47] B. C. Kalpelbe, A. G. Adaambiik, and W. Peng, (2025) “Vision Language Models in Medicine" arXiv preprint arXiv:2503.01863 (arXiv:2503.01863): DOI: 10.48550/arXiv.2503.01863.
  48. [48] R. Wang, Q. Yao, Z. Jiang, H. Lai, Z. He, X. Tao, and S. K. Zhou, (2025) “ECAMP: Entity-centered Context aware Medical Vision Language Pre-training" Medical Image Analysis 105: 103690. DOI: 10.1016/j.media.2025.103690.
  49. [49] J. Ji, Y. Hou, X. Chen, Y. Pan, and Y. Xiang, (2024) “Vision-Language Model for Generating Textual Descriptions From Clinical Images: Model Development and Vali dation Study" JMIR Formative Research 8(1): e32690. DOI: 10.2196/32690.
  50. [50] R. Ghnemat, S. Alodibat, and Q. Abu Al-Haija, (2023) “Explainable Artificial Intelligence (XAI) for Deep Learning Based Medical Imaging Classification" Journal of Imaging 9(9): 177. DOI: 10.3390/jimaging9090177.
  51. [51] G. T. Neamah, M. Q. Al Nwuaini, K. A. Abd, A. J. M. Nasrawi, and S. R. M. Hussein, (2022) “Retinopathy of Prematurity, a Two-Year Experience at the ROP Screening Unit from AL-Zahraa Teaching Hospital, AL-Najaf, Iraq" Journal of Medicine and Life 15(11): 1431–1436. DOI: 10.25122/jml-2022-0060.
  52. [52] M. Dhahir Al-Mendalawi, (2024) “Presentation of Retinopathy of Prematurity and Associated Risk Factor in a Referral Center in Iraq" Arab Board Medical Journal 25(1): 45. DOI: 10.4103/abmj.abmj_38_23.
  53. [53] M. F. Chiang, G. E. Quinn, A. R. Fielder, and R. Chan, (2022) “International Classification of Retinopathy of Prematurity, 3rd Edition (ICROP3)" Journal of the American Association for Pediatric Ophthalmology and Strabismus (JAAPOS) 26(4): e3. DOI: 10.1016/j.jaapos.2022.08.013.
  54. [54] A. Bai, S. Dai, J. Hung, A. Kirpalani, H. Russell, J. Elder, S. Shah, C. Carty, and Z. Tan, (2023) “Multi center Validation of Deep Learning Algorithm ROP.AI for the Automated Diagnosis of Plus Disease in ROP" Translational Vision Science & Technology 12(8): 13. DOI: 10.1167/tvst.12.8.13.
  55. [55] J. L. McKee, M. C. Kaufman, A. K. Gonzalez, M. P. Fitzgerald, S. L. Massey, F. Fung, S. K. Kessler, S. Witzman, N. S. Abend, and I. Helbig, (2023) “Lever aging Electronic Medical Record-Embedded Standardised Electroencephalogram Reporting to Develop Neona tal Seizure Prediction Models: A Retrospective Cohort Study" The Lancet Digital Health 5(4): e217–e226. DOI: 10.1016/S2589-7500(23)00004-3.
  56. [56] N.Ghanbari,(2025)“EnhancingtheDetail Resolution of Foggy Images Using Fuzzy Histogram Equalization with Weighted Distribution" Current Applied Sciences: 1 14. DOI: 10.22034/cas.2025.520327.1048.
  57. [57] X. Liu, T. Nguyen, et al., (2024) “Medical Images Enhancement by Integrating CLAHE with Wavelet Trans form and Non-Local Means Denoising" Academic Journal of Computing & Information Science 7(1): DOI: 10.25236/AJCIS.2024.070108.
  58. [58] W. Tian, X. Huang, T. Cheng, W. He, J. Fang, R. Feng, D. Geng, and X. Zhang, (2025) “A Medical Multimodal Large Language Model for Pediatric Pneumonia" IEEE Journal of Biomedical and Health Informatics 29(9): 6869–6882. DOI: 10.1109/JBHI.2025.3569361.


    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.