Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Hoang-Huy Nguyen1,2, Nhat-Truong Truong1,2, Thanh-Ha Ho-Vu1,2, Dung Van Nguyen1,2, Long Quang Nguyen1,2, and Tuyet-Mai Tran-Thuy1,2This email address is being protected from spambots. You need JavaScript enabled to view it.

1Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam

2Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam


 

 

Received: January 31, 2025
Accepted: June 3, 2025
Publication Date: July 1, 2025

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202603_29(3).0013  


This work emphasized a simple route to enhance the catalytic performance of modified cryptomelane in airborne toluene abatement. Cu-cryptomelane and H-cryptomelane materials were prepared by directly treating the pristine cryptomelane material with copper (II) cations and acetic acid, respectively. Wherein the pristine crytomelane was prepared by reducing potassium permanganate with benzyl alcohol and in the aid of hexadecyltrimethylammonium bromide at 60C. X-ray diffraction and scanning electron microscope evidences exhibited cryptomelane slabs with the size of 39.1 ± 1.1 nm,41.4 ± 1.2 nm, and 76.4 ± 2.9 nm for Cu-cryptomelane, for H-cryptomelane, and for the as-prepared cryptomelane samples, respectively. Besides, Cu-cryptomelane presented a co-existence of orthorhombic Cu(OH)2 nanorods leading to a hydrogen reduction peak centered at 180C for converting Cu2+ species into metallic copper. Among the three synthesized materials, H-cryptomelane exhibited much more medium acid sites recorded from NH3-TPD profiles, and the highest value of total H2 consumption (3.43 mmolH2/g) promising positive enhancement of catalytic performance in deep oxidation of airborne toluene. Pristine, Cu-, and H-cryptomelane catalysts converted 60% toluene (T60) at 278 C,261C, and 225C, respectively. Moreover, 98% of toluene was deeply oxidized at 300C (T98) for H-cryptomelane while the T100 of Cu-cryptomelane was 350C. Otherwise, the pristine cryptomelane only showed 88% converted toluene at 350C of the reaction temperature, testifying a beneficial treatment of acetic acid for improvement of cryptomelanecatalytic oxidation.


Keywords: OMS-2; sol-gel method; toluene removal; CTAB, H-cryptomelane


  1. [1] K.-H. Cohr and J. Stokholm, (1979) “Toluene: A toxicologic review" Scandinavian Journal of Work, Environment &Health 5(2): 71–90. DOI: 10.5271/sjweh.2664.
  2. [2] T.-T. Win-Shwe and H. Fujimaki, (2010) “Neurotoxicity of toluene" Toxicology Letters 198(2): 93–99. DOI: 10.1016/j.toxlet.2010.06.022.
  3. [3] E. A. Anigilaje, Z. A. Nasir, and C. Walton, (2024) “Exposure to benzene, toluene, ethylbenzene, and xylene (BTEX) at Nigeria’s petrol stations: a review of current status, challenges and future directions" Frontiers in Public Health 12: 1295758. DOI: 10.3389/fpubh.2024. 1295758.
  4. [4] J. H. Hannigan and S. E. Bowen, (2010) “Reproductive Toxicology and Teratology of Abused Toluene" Systems Biology in Reproductive Medicine 56(2): 184–200. DOI: 10.3109/19396360903377195.
  5. [5] K. Vellingiri, P. Kumar, A. Deep, and K.-H. Kim, (2017) “Metal-organic frameworks for the adsorption of gaseous toluene under ambient temperature and pressure" Chemical Engineering Journal 307: 1116–1126. DOI: 10.1016/j.cej.2016.09.012.
  6. [6] L. N. Q. Tu, N. V. H. Nhan, N. Van Dung, N. T. An, and N. Q. Long, (2019) “Enhanced photocatalytic performance and moisture tolerance of nano-sized Me/TiO2 zeolite Y (Me= Au, Pd) for gaseous toluene removal: activity and mechanistic investigation" Journal of Nanoparticle Research 21: 1–19. DOI: 10.1007/s11051-019-4642-y.
  7. [7] X. Zhang, J. Zhao, Z. Song, W. Liu, H. Zhao, M. Zhao, Y. Xing, Z. Ma, and H. Du, (2020) “The catalytic oxidation performance of toluene over the Ce-Mn-Ox catalysts: Effect of synthetic routes" Journal of Colloid and Interface Science 562: 170–181. DOI: 10.1016/j.jcis.2019.12.029.
  8. [8] S. Hoseini, N. Rahemi, S. Allahyari, and M. Tasbihi, (2019) “Application of plasma technology in the removal of volatile organic compounds (BTX) using manganese oxide nano-catalysts synthesized from spent batteries" Journal of Cleaner Production 232: 1134–1147. DOI: 10.1016/j.jclepro.2019.05.227.
  9. [9] S. L. Brock, N. Duan, Z. R. Tian, O. Giraldo, H. Zhou, and S. L. Suib, (1998) “A Review of Porous Manganese Oxide Materials" ChemistryofMaterials10(10): 2619 2628. DOI: 10.1021/cm980227h.
  10. [10] T.-M. Tran-Thuy, T.-P. Tran, and D. Van Nguyen, (2023) “Cobalt-doped cryptomelane: surface-tailored oxy gen defects and efficiently catalytic ozonation of p Nitrophenol" Topics in Catalysis 66(1): 289–296. DOI: 10.1007/s11244-022-01773-5.
  11. [11] K. Li, J. Chen, Y. Peng, W. Lin, T. Yan, and J. Li, (2017) “The relationship between surface open cells of α-MnO2 and CO oxidation ability from a surface point of view" Journal of Materials ChemistryA5(39):20911 20921. DOI: 10.1039/C7TA04624C.
  12. [12] V. P. Santos, M. F. R. Pereira, J. J. M. Órfão, and J. L. Figueiredo, (2009) “Catalytic oxidation of ethyl acetate over a cesium modified cryptomelane catalyst" Applied Catalysis B: Environmental 88(3-4): 550–556. DOI: 10.1016/j.apcatb.2008.10.006.
  13. [13] B. A. Cymes, C. B. Almquist, and M. P. S. Krekeler, (2020) “Europium-doped cryptomelane: Multi-pathway synthesis, characterization, and evaluation for the gas phase catalytic oxidation of ethanol" Applied Catalysis A: General 589: 117310. DOI: 10.1016/j.apcata.2019. 117310.
  14. [14] A. Davó-Quiñonero, M. Navlani-García, D. Lozano-Castelló, and A. Bueno-López, (2016) “CuO/cryptomelane catalyst for preferential oxidation of COinthe presence of H2: deactivation and regeneration" Catalysis Science & Technology 6(14): 5684–5692. DOI: 10.1039/c6cy00329j.
  15. [15] O. S. G. P. Soares, A. M. Fonseca, P. Parpot, J. J. M. Órfão, M. F. R. Pereira, and I. C. Neves, (2018) “Ox idation of volatile organic compounds by highly efficient metal zeolite catalysts" ChemCatChem 10(17): 3754–3760. DOI: 10.1002/cctc.201800524.
  16. [16] M. Romero-Sáez, D. Divakar, A. Aranzabal, J. R. González-Velasco, and J. A. González-Marcos, (2016) “Catalytic oxidation of trichloroethylene over Fe-ZSM-5: Influence of the preparation method on the iron species and the catalytic behavior" Applied Catalysis B: Envi ronmental 180: 210–218. DOI: 10.1016/j.apcatb.2015.06.027.
  17. [17] X. Li, Y. Wang, D. Chen, N. Li, Q. Xu, H. Li, J. He, and J. Lu, (2023) “A highly dispersed Pt/copper modified MnO2catalyst for the complete oxidation of volatile organic compounds: the effect of oxygen species on the catalytic mechanism" Green Energy & Environment 8(2): 538–547. DOI: 10.1016/j.gee.2021.07.004.
  18. [18] Y. Liu, W. Zong, H. Zhou, D. Wang, R. Cao, J. Zhan, L. Liu, and B. W.-L. Jang, (2018) “Tuning the interlayer cations of birnessite-type MnO2 to enhance its oxidation ability for gaseous benzene with water resistance" Catalysis Science & Technology 8(20): 5344–5358. DOI: 10.1039/C8CY01147H.
  19. [19] T.-M. Tran-Thuy, L.-D. Nguyen, H.-H. Lam, D. V. Nguyen, and T. Dang-Bao, (2020) “Tuning surfactant templates of nanorod-like cryptomelane synthesis towards vapor-phase selective oxidation of benzyl alcohol" Materials Letters 277: 128333. DOI: 10.1016/j.matlet.2020.128333.
  20. [20] L. Wang, K. Zhang, Z. Hu, W. Duan, F. Cheng, and J. Chen, (2014) “Porous CuO nanowires as the anode of rechargeable Na-ion batteries" Nano Research 7: 199 208. DOI: 10.1007/s12274-013-0387-6.
  21. [21] D. Zhou, X. Pu, Z. Jiao, and W. Li, (2022) “Controlled morphological synthesis of temperature-dependent CuO nanostructures and their effect on photocatalytic performance" Materials Research Express 9(9): 095501. DOI: 10.1088/2053-1591/ac8bc6.
  22. [22] G. H. Du and G. Van Tendeloo, (2004) “Cu(OH)2 nanowires, CuO nanowires and CuO nanobelts" Chemical Physics Letters 393(1-3): 64–69. DOI: 10.1016/j.cplett.2004.06.017.
  23. [23] W.Y. Hernández, M. A. Centeno, F. Romero-Sarria, S. Ivanova, M. Montes, and J. A. Odriozola, (2010) “Modified cryptomelane-type manganese dioxide nanomaterials for preferential oxidation of CO in the presence of hydrogen" Catalysis Today 157(1-4): 160–165. DOI: 10.1016/j.cattod.2010.03.010.
  24. [24] N.J. Mazumdar, G. Deshmukh, A. Rovea, P. Kumar, M. Arredondo-Arechavala, and H. Manyar, (2022) “Insights into selective hydrogenation of levulinic acid using copper on manganese oxide octahedral molecular sieves" Royal Society Open Science 9(7): 220078. DOI: 10.1098/rsos.220078.
  25. [25] A. Xie, Y. Tao, X. Jin, P. Gu, X. Huang, X. Zhou, S. Luo, C. Yao, and X. Li, (2019) “A β-Fe2O3-modified nanoflower-MnO2/attapulgite catalyst for low temperature SCR of NOx with NH3" New Journal of Chemistry 43(6): 2490–2500. DOI: 10.1039/C8NJ04524K.
  26. [26] Z. Xiao, J. Yang, R. Ren, J. Li, N. Wang, and W. Chu, (2020) “Facile synthesis of homogeneous hollow micro sphere Cu–Mn based catalysts for catalytic oxidation of toluene" Chemosphere 247: 125812. DOI: 10.1016/j.chemosphere.2020.125812.
  27. [27] M. Sun, B. Zhang, H. Liu, B. He, F. Ye, L. Yu, C. Sun, and H. Wen, (2017) “The effect of acid/alkali treatment on the catalytic combustion activity of manganese oxide octahedral molecular sieves" RSC advances 7(7): 3958–3965. DOI: 10.1039/C6RA27700D.
  28. [28] R. Kumar, S. Sithambaram, and S. L. Suib, (2009) “Cyclohexane oxidation catalyzed by manganese oxide octahedral molecular sieves—Effect of acidity of the catalyst" Journal of Catalysis 262(2): 304–313. DOI: 10.1016/j.jcat.2009.01.007.
  29. [29] S. I. Suárez-Vázquez, S. Gil, J. M. García-Vargas, A. Cruz-López, and A. Giroir-Fendler, (2018) “Catalytic oxidation of toluene by SrTi1-XBXO3 (B= Cu and Mn) with dendritic morphology synthesized by one pot hydrothermal route" Applied Catalysis B: Environmental 223: 201–208. DOI: 10.1016/j.apcatb.2017.04.042.
  30. [30] Z. Wang, L. Zhang, J. Ji, Y. Wu, Y. Cai, X. Yao, X. Gu, Y. Xiong, H. Wan, L. Dong, and Y.-W. Chen, (2022) “Catalytic enhancement of small sizes of CeO2 additives on Ir/Al2O3 for toluene oxidation" Applied Surface Science 571: 151200. DOI: 10.1016/j.apsusc.2021.151200.


    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.