Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Nurhazwani Ismail1,3, Zurina Zainal Abidin1,2This email address is being protected from spambots. You need JavaScript enabled to view it., Farah Saleena Talip4, Nur Aqilah Muhammad Fairuz1, Mohamednageib Ahmed Hassan1, and Robiah Yunus1

1Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

2Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

3School of Engineering, Faculty of Innovation & Technology, Taylor’s University, 47500 Subang Jaya, Selangor, Malaysia

4Department of Food and Process Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia


 

 

Received: March 10, 2025
Accepted: June 22, 2025
Publication Date: July 17, 2025

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202603_29(4).0001  


This research focuses on converting liquid J. curcas extract into a powder coagulant using spray drying to improve the shelf life. The inlet temperature ( 120−180C ), feed concentration (20−50%) and pump flow rate (600−4600 ml/h) of drying was investigated and Response Surface Methodology was used for optimization, with powder yield, moisture, and protein content as responses. Spray drying optimum conditions were 180C, 50% of feed concentration and 600 ml/h pump flow rate, to give a powder yield of 5.69% with 4.22% and 78.8 mg/l of moisture and protein content respectively. Fourier transform infrared spectroscopy analysis revealed presence of amino and carboxyl groups in the powder. Agglomerated powder with particle size between 5.62 to 7 µm were seen with presence of carbon, oxygen and nitrogen through FESEM-EDX, which were associated with existing protein in coagulant agent in powder. The spray-dried J. curcas press cake liquid extract powder performance was evaluated in the coagulation process, showing optimal performance at pH 3 with the dose used of 200 mg/l. Comparison of J. curcas press cake liquid extract coagulant with conventional alum resulted in a comparable turbidity removal of 99.47% and 99.33% respectively. The findings proved spray-dried powder effectiveness as coagulant which marked a significant steppingstone for a viable industrial application.


Keywords: Biocoagulant, Jatropha, spray drying, coagulation, water treatment


  1. [1] S. R. P. Primandari, A. A. Islam, Z. Yaakob, and S. Chakrabarty, (2018) “Jatrophacurcas L. biomass waste and its utilization": DOI: 10.5772/intechopen.72803.
  2. [2] Z. Z. Abidin, N. Ismail, R. Yunus, I. Ahamad, and A. Idris, (2011) “A preliminary study on Jatrophacurcas as coagulant in wastewater treatment" Environmental technology 32(9): 971–977. DOI: 10.1080/09593330.2010.521955.
  3. [3] Z. Abidin, N. M. Norhafizah Madehi, R. Y. Robiah Yunus, and A. D. Aishah Derahman, (2019) “Effect of storage conditions on Jatropha curcas performance as biocoagulant for treating Palm Oil Mill Effluent." DOI: 10.3923/jest.2019.92.101.
  4. [4] Y. Ho, I. Norli, A. FM, N. Morad, et al., (2014) “New vegetal biopolymeric flocculant: A degradation and floccu lation study" Iranica Journal of Energy & Environment 5(1): DOI: 10.5829/idosi.ijee.2014.05.01.05.
  5. [5] S. Katayon, M. M. M. Noor, M. Asma, L. A. Ghani, A. Thamer, I. Azni, J. Ahmad, B. Khor, and A. Suleyman, (2006) “Effects of storage conditions of Moringa oleifera seeds on its performance in coagulation" Biore source technology 97(13): 1455–1460. DOI: 10.1016/j.biortech.2005.07.031.
  6. [6] W. L. Ang and A. W. Mohammad,(2020) “State of the art and sustainability of natural coagulants in water and wastewater treatment" Journal of Cleaner production 262: 121267. DOI: 10.1016/j.jclepro.2020.121267.
  7. [7] F. Citra, G. Aulia, R. Indiarto, A. Asyifaa, and S. Achmad, (2021) “Conventional And Advanced Food Drying Technology: A Current Review Article" International Journal of Scientific & Technology Research 10(1): 99–107.
  8. [8] E. H. Mohamed, T. A. Mohammad, M. J. M. M. Noor, and A. H. Ghazali, (2015) “Influence of extraction and freeze-drying durations on the effectiveness of Moringa oleifera seeds powder as a natural coagulant" Desalination and Water Treatment 55(13): 3628–3634. DOI: 10.1080/19443994.2014.946713.
  9. [9] T. A. Mohammad, E. H. Mohamed, M. J. M. M. Noor, andA.H.Ghazali,(2013) “Coagulation activity of spray dried salt extracted Moringa oleifera" Desalination and Water Treatment 51(7-9): 1941–1946. DOI: 10.1080/19443994.2012.715435.
  10. [10] M.J. M. M. Noor, E. H. Mohamed, T. A. Mohammad, and A. H. Ghazali, (2013) “Effect of the packaging and storage conditions on the coagulation activity of spray dried salt-extracted Moringa oleifera" Desalination and Water Treatment 51(7-9): 1947–1953. DOI: 10.1080/19443994.2012.715428.
  11. [11] S. Sayyar, Z. Z. Abidin, R. Yunus, and A. Muhammad, (2009) “Extraction of oil from Jatropha seeds-optimization and kinetics" American Journal of Applied Sciences 6(7): 1390. DOI: 10.3844/ajassp.2009.1390.1395.
  12. [12] C. Anandharamakrishnan. Handbook of drying for dairy products. John Wiley & Sons, 2017. DOI: 10.1002/9781118930526.CH6.
  13. [13] M. A. Bezerra, R. E. Santelli, E. P. Oliveira, L. S. Villar, and L. A. Escaleira, (2008) “Response surface methodology (RSM) as a tool for optimization in analytical chemistry" Talanta 76(5): 965–977. DOI: 10.1016/j.talanta.2008.05.019.
  14. [14] N.A.A.Halim, Z. Z. Abidin, S. I. Siajam, C. G. Hean, and M. R. Harun, (2021) “Optimization studies and compositional analysis of subcritical water extraction of essential oil from Citrus hystrix DC. leaves" The Journal of Supercritical Fluids 178: 105384. DOI: 10.1016/j.supflu.2021.105384.
  15. [15] S. Santhalakshmy, S. J. D. Bosco, S. Francis, and M. Sabeena, (2015) “Effect of inlet temperature on physicochemical properties of spray-dried jamun fruit juice pow der" Powder Technology 274: 37–43. DOI: 10.1016/j.powtec.2015.01.016.
  16. [16] W. Yu, J. Gregory, and L. Campos, (2010) “The effect of additional coagulant on the re-growth of alum–kaolin f locs" Separation and purification technology 74(3): 305–309. DOI: 10.1016/j.seppur.2010.06.020.
  17. [17] A. P. H. Association, A. W. W. Association, W. P. C. Federation, and W. E. Federation. Standard methods for the examination of water and wastewater. 3. American Public Health Association., 1917.
  18. [18] J. Li, S. Jiao, L. Zhong, J. Pan, and Q. Ma, (2013) “Optimizing coagulation and flocculation process for kaolinite suspension with chitosan" Colloids and Surfaces A: Physicochemical and Engineering Aspects 428: 100 110. DOI: 10.1016/j.colsurfa.2013.03.034.
  19. [19] M. Fazaeli, Z. Emam-Djomeh, A. K. Ashtari, and M. Omid, (2012) “Effect of spray drying conditions and feed composition on the physical properties of black mulberry juice powder" Food and bioproducts processing 90(4): 667–675. DOI: 10.1016/j.fbp.2012.04.006.
  20. [20] P. L. Phing and L. A. K. Saleena, (2022) “Effects of spray-drying parameters on physicochemical properties of powdered fruits" Foods and Raw materials 10(2): 235–251. DOI: 10.21603/2308-4057-2022-2-533.
  21. [21] N. H. Harun, Z. Zainal Abidin, U. A. Majid, M. R. Abdul Hamid, A. H. Abdullah, R. Othaman, and M. Y. Harun, (2022) “Adopting sustainable jatropha oil bio-based polymer membranes as alternatives for environmental remediation" Polymers 14(16): 3325. DOI: 10.3390/polym14163325.
  22. [22] N.Kingwatee, A. Apichartsrangkoon, P. Chaikham, S. Worametrachanon, J. Techarung, and T. Pankasem suk, (2015) “Spray drying Lactobacillus casei 01 in lychee juice varied carrier materials" LWT-Food Science and Technology 62(1): 847–853. DOI: 10.1016/j.lwt.2014. 12.007.
  23. [23] J. Lim, F. Taip, N. Ab Aziz, M. Ibrahim, and M. How, (2021) “Effects of drying methods on the physicochemical properties of powder made from different parts of pump kin" Food Res 5(1): 160–167. DOI: 10.26656/fr.2017.5(S1).058.
  24. [24] M. V. Zambrano, B. Dutta, D. G. Mercer, H. L. MacLean, and M. F. Touchie, (2019) “Assessment of moisture content measurement methods of dried food products in small-scale operations in developing countries: A review" Trends in Food Science & Technology 88: 484–496. DOI: 10.1016/j.tifs.2019.04.006.
  25. [25] R. S. Reddy, C. Ramachandra, S. Hiregoudar, U. Nidoni, J. Ram, and M. Kammar, (2014) “Influence of processing conditions on functional and reconstitution properties of milk powder made from Osmanabadi goat milk by spray drying" Small Ruminant Research 119(1-3): 130–137. DOI: 10.1016/J.SMALLRUMRES. 2014.01.013.
  26. [26] T. Donnellan, T. Hennessy, M. Fenelon, and D. O’Callaghan, (2014) “The potential for scale economies in milk powder processing: anirish case study" International Journal of Dairy Technology 67(1): 129–134. DOI: 10.1111/1471-0307.12109.
  27. [27] Z. Z. Abidin, N. S. M. Shamsudin, N. Madehi, and S. Sobri, (2013) “Optimisation of a method to extract the active coagulant agent from Jatropha curcas seeds for use in turbidity removal" Industrial Crops and Products 41: 319–323. DOI: 10.1016/j.indcrop.2012.05.003.
  28. [28] Z.Z.Abidin, N. Madehi, and R. Yunus, (2017) “C oag ulative B ehaviour of Jatropha curcas and its Performance in Wastewater Treatment" Environmental Progress & Sustainable Energy 36(6): 1709–1718. DOI: 10.1002/ep.12635.
  29. [29] E. E. Özdemir, A. Görgüç, E. Gençda˘g, and F. M. Yılmaz, (2022) “Physicochemical, functional and emulsifying properties of plant protein powder from industrial sesame processing waste as affected by spray and freeze drying" Lwt 154: 112646. DOI: 10.1016/j.lwt.2021.112646.
  30. [30] D. Titus, E. J. J. Samuel, and S. M. Roopan. “Nanopar ticle characterization techniques”. In: Green synthesis, characterization and applications of nanoparticles. Else vier, 2019, 303–319. DOI: 10.1016/B978-0-08-102579 6.00012-5.
  31. [31] J. Xiao, H. Zhang, L. Niu, X. Wang, and X. Lu, (2011) “Evaluation of detoxification methods on toxic and antinutritional composition and nutritional quality of proteins in Jatropha curcas meal" Journal of Agricultural and Food Chemistry 59(8): 4040–4044. DOI: 10.1021/jf200104b.
  32. [32] A. Mayeen, L. K. Shaji, A. K. Nair, and N. Kalarikkal. “Morphological characterization of nanomaterials”. In: Characterization of nanomaterials. Elsevier, 2018, 335–364. DOI: 10.1016/B978-0-08-101973-3.00012-2.
  33. [33] K. Fyfe, O. Kravchuk, A. V. Nguyen, H. Deeth, and B. Bhandari, (2011) “Influence of dryer type on surface characteristics of milk powders" Drying Technology 29(7): 758–769. DOI: 10.1080/07373937.2010.538481.
  34. [34] D. Dantas, M. A. Pasquali, M. Cavalcanti-Mata, M. E. Duarte, and H. M. Lisboa, (2018) “Influence of spray drying conditions on the properties of avocado powder drink" Food chemistry 266: 284–291. DOI: 10.1016/j.foodchem.2018.06.016.
  35. [35] K. Meftah, S. Meftah, H. Lamkhanter, T. Bouzid, Y. Rezzak, S. Touil, and A. Abid, (2024) “Extraction and optimization of Austrocy lindropuntia subulata powder as a novel green coagulant" Desalination and Water Treatment 318: 100339. DOI: 10.1016/j.dwt.2024.100339.
  36. [36] B. I. Okolo, O. Adeyi, E. O. Oke, C. M. Agu, P. C. Nnaji, K. N.Akatobi,andD.O.Onukwuli,(2021)“Co agulation kinetic study and optimization using response surface methodology for effective removal of turbidity from paint wastewater using natural coagulants" Scientific African 14: e00959. DOI: 10.1016/j.sciaf.2021.e00959.
  37. [37] I. Murrieta-Pazos, L. Galet, C. Rolland, J. Scher, and C. Gaiani, (2013) “Interest of energy dispersive X-ray microanalysis to characterize the surface composition of milk powder particles" Colloids and Surfaces B: Biointerfaces 111: 242–251. DOI: 10.1016/j.colsurfb.2013. 05.025.
  38. [38] S. Mohd-Asharuddin, N. Othman, N. S. M. Zin, and H. A. Tajarudin. “A chemical and morphological study of cassava peel: A potential waste as coagulant aid”. In: MATEC web of conferences. 103. EDP Sciences. 2017, 06012. DOI: 10.1051/matecconf/201710306012.
  39. [39] S. Sibartie and N. Ismail. “Potential of Hibiscus sabdarif fa and Jatropha curcas as natural coagulants in the treatment of pharmaceutical wastewater”. In: MATEC web of conferences. 152. EDP Sciences. 2018, 01009. DOI: 10.1051/matecconf/201815201009.
  40. [40] K. A. ADENIRAN and F. Akinwunmi, (2016) “Rel ative Coagulation Effectiveness of Jatropha curcas Press Cake (Physic Nut) and Aluminium Sulphate in Purifying Domestic Sewage" Notulae Scientia Biologicae 8(3): 306–311. DOI: 10.15835/nsb.8.3.9849.
  41. [41] M. H. Ng and M. S. Elshikh, (2021) “Utilization of Moringa oleifera as natural coagulant for water purification" Industrial and Domestic Waste Management 1(1): 1–11. DOI: 10.53623/idwm.v1i1.41.
  42. [42] B. M. Kim, H. Lee, and J. Ahn, (2020) “Optimization of initial turbidity and coagulant concentration to remove turbidity using moringa oleifera seed" Journal of Ko rean Society of Environmental Engineers 42(2): 47–54. DOI: 10.4491/KSEE.2020.42.2.47.
  43. [43] S. Bhatia, Z. Othman, and A. L. Ahmad, (2007) “Pretreatment of palm oil mill effluent (POME)using Moringa oleifera seeds as natural coagulant" Journal of Hazardous Materials 145(1-2): 120–126. DOI: 10.1016/j.jhazmat.2006.11.003.
  44. [44] J. R. Balbinoti, R. M. M. Jorge, R. E. dos Santos Junior, T. C. V. Balbinoti, L. A. de Almeida Coral, and F. de Jesus Bassetti, (2024) “Treatment of low-turbidity water by coagulation combining Moringa oleifera Lam and polyaluminium chloride (PAC)" Journal of Environmental Chemical Engineering 12(1): 111624. DOI: 10.1016/j.jece.2023.111624.


    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.