Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Chen Shunhong, Teerasak Hudakorn, and Saroj PullteapThis email address is being protected from spambots. You need JavaScript enabled to view it.

Department of Mechanical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom, Thailand


 

Received: August 10, 2025
Accepted: October 1, 2025
Publication Date: October 11, 2025

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202605_29(5).0019  


The uneven deposition of zinc on the electrode surface leads to inadequate durability and stability of zinc-air batteries, hindering their widespread application. This study systematically investigates the fabrication of zinc anodes by electrochemical deposition onto nickel foam substrates and evaluates their performance in zinc-air batteries. Zinc was deposited for varying durations(3−5hours), andtheresultingelectrodeswerecharacterized using Scanning Electron Microscopy coupled with Energy-Dispersive X-ray Spectroscopy (SEMEDS), X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS) and Transmission Electron Microscopy (TEM). Electrochemical measurements show that the sample deposited for 4 hours delivers the best overall performance, with an average discharge voltage of 1.17 V and a load current of 3.52 mA which is 21% higher than cells with pure- Zn anodes. Microstructural analysis further confirms that 4 hours affords the optimal balance between zinc loading ( 84.01wt% ) and deposition uniformity. This study delineates the structure performance correlation among electrodeposition time, zinc loading, microstructural features, and electrochemical behavior, offering vital theoretical guidance and process reference for the optimized fabrication of metal-air battery anodes.


Keywords: Zinc anode; electrochemical deposition; nickel foam; zinc-air battery


  1. [1] H.S.HayajnehandX.Zhang,(2020) “Logistics Design for Mobile Battery Energy Storage Systems" Energies 13(5): 1157. DOI: 10.3390/en13051157.
  2. [2] Z. Zhu, T. Jiang, M. Ali, Y. Meng, Y. Jin, Y. Cui, and W. Chen, (2022) “Rechargeable Batteries for Grid Scale Energy Storage" Chemical Reviews 122(22): 16610–16751. DOI: 10.1021/acs.chemrev.2c00289.
  3. [3] R.-B. Huang, M.-Y. Wang, J.-F. Xiong, H. Zhang, J.-H. Tian, and J.-F. Li, (2025) “Anode optimization strategies for zinc–air batteries" eScience 5(3): 100309. DOI: 10.1016/j.esci.2024.100309.
  4. [4] J. Fu, Z. P. Cano, M. G. Park, A. Yu, M. Fowler, and Z. Chen, (2017) “Electrically Rechargeable Zinc Air Batteries: Progress, Challenges, and Perspectives" Advanced Materials 29(7): 1604685. DOI: 10.1002/adma.201604685.
  5. [5] R. Khezri, S. Rezaei Motlagh, M. Etesami, A. A. Mo hamad, F. Mahlendorf, A. Somwangthanaroj, and S. Kheawhom, (2022) “Stabilizing zinc anodes for different configurations of rechargeable zinc-air batteries" Chemical Engineering Journal 449: DOI: 10.1016/j.cej.2022.137796.
  6. [6] J. B. Goodenough and K.-S. Park, (2013) “The Li-Ion Rechargeable Battery: A Perspective" Journal of the American Chemical Society 135(4): 1167–1176. DOI: 10.1021/ja3091438.
  7. [7] J. Zhang, Q. Zhou, Y. Tang, L. Zhang, and Y. Li, (2019) “Zinc–air batteries: are they ready for prime time?" Chemical Science 10(39): 8924–8929. DOI: 10.1039/C9SC04221K.
  8. [8] N. Nitta, F. Wu, J. T. Lee, andG.Yushin,(2015) “Li-ion battery materials: present and future" Materials Today 18(5): 252–264. DOI: 10.1016/j.mattod.2014.10.040.
  9. [9] M. Winter, B. Barnett, and K. Xu, (2018) “Before Li Ion Batteries" Chemical Reviews 118(23): 11433–11456. DOI: 10.1021/acs.chemrev.8b00422.
  10. [10] M. Li, J. Lu, Z. Chen, and K. Amine, (2018) “30 Years of Lithium-Ion Batteries" Advanced Materials 30(33): 1800561. DOI: 10.1002/adma.201800561.
  11. [11] P. Gu, M. Zheng, Q. Zhao, X. Xiao, H. Xue, and H. Pang, (2017) “Rechargeable zinc–air batteries: a promising way to green energy" Journal of Materials Chemistry A 5(17): 7651–7666. DOI: 10.1039/C7TA01693J.
  12. [12] C. Shunhong, S. Pullteap, and T. Mao, (2024) “Re search Progress and Future Expectations in Anode of Secondary Zinc-Air Batteries: A Review" Applied Science and Engineering Progress: DOI: 10.14416/j.asep.2024.06.006.
  13. [13] L. Li, Y. C. A. Tsang, D. Xiao, G. Zhu, C. Zhi, and Q. Chen, (2022) “Phase-transition tailored nanoporous zinc metal electrodes for rechargeable alkaline zinc-nickel oxide hydroxide and zinc-air batteries" Nature Communications 13(1): 2870. DOI: 10.1038/s41467-022-30616-w.
  14. [14] K. Harting, U. Kunz, and T. Turek, (2012) “Zinc-air Batteries: Prospects and Challenges for Future Improve ment" Zeitschrift für Physikalische Chemie 226(2): 151–166. DOI: 10.1524/zpch.2012.0152.
  15. [15] X. Chen, Z. Zhou, H. E. Karahan, Q. Shao, L. Wei, and Y. Chen, (2018) “Recent Advances in Materials and Design of Electrochemically Rechargeable Zinc–Air Batteries" Small 14(44): 1801929. DOI: 10.1002/smll.201801929.
  16. [16] O. Haas, F. Holzer, K. Müller, and S. Müller. “Metal/air batteries: the zinc/air case”. en. In: Hand book of Fuel Cells. 2010. DOI: 10.1002/9780470974001.f104022.
  17. [17] E. Davari, A. D. Johnson, A. Mittal, M. Xiong, and D. G.Ivey,(2016) “Manganese-cobalt mixed oxide film as a bifunctional catalyst for rechargeable zinc-air batteries" Electrochimica Acta 211: 735–743. DOI: 10.1016/j.electacta.2016.06.085.
  18. [18] D. Liu, Y. Tong, X. Yan, J. Liang, and S. X. Dou, (2019) “Recent Advances in Carbon-Based Bifunctional Oxygen Catalysts for Zinc-Air Batteries" Batteries & Supercaps 2(9): 743–765. DOI: 10.1002/batt.201900052.
  19. [19] M. Wu, G. Zhang, Y. Hu, J. Wang, T. Sun, T. Regier, J. Qiao, and S. Sun, (2021) “Graphitic-shell encapsulated FeNi alloy/nitride nanocrystals on biomass-derived N doped carbon as an efficient electrocatalyst for rechargeable Zn-air battery" Carbon Energy 3(1): 176–187. DOI: 10.1002/cey2.52.
  20. [20] J. Ding, P. Wang, S. Ji, H. Wang, V. Linkov, and R. Wang, (2019) “N-doped mesoporous FeNx/carbon as ORR and OER bifunctional electrocatalyst for recharge able zinc-air batteries" Electrochimica Acta 296: 653 661. DOI: 10.1016/j.electacta.2018.11.105.
  21. [21] R. Khezri, S. R. Motlagh, M. Etesami, P. Pakawanit, S. Olaru, A. Somwangthanaroj, and S. Kheawhom, (2024) “Balancing current density and electrolyte flow for improved zinc-air battery cyclability" Applied Energy 376: 124239. DOI: 10.1016/j.apenergy.2024.124239.
  22. [22] T. Placke, R. Kloepsch, S. Dühnen, and M. Win ter, (2017) “Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density" Journal of Solid State Electrochemistry 21(7): 1939–1964. DOI: 10.1007/s10008-017-3610-7.
  23. [23] J.F. Parker, C. N. Chervin, I. R. Pala, M. Machler, M. F. Burz, J. W. Long, and D. R. Rolison, (2017) “Recharge able nickel–3D zinc batteries: An energy-dense, safer alter native to lithium-ion" Science: DOI: 10.1126/science. aak9991.
  24. [24] M. Wang, F. Zhang, C.-S. Lee, and Y. Tang, (2017) “Low-CostMetallic Anode Materials for High Performance Rechargeable Batteries" Advanced Energy Materials 7(23): 1700536. DOI: 10.1002/aenm.201700536.
  25. [25] J. Yi, P. Liang, X. Liu, K. Wu, Y. Liu, Y. Wang, Y. Xia, and J. Zhang, (2018) “Challenges, mitigation strategies and perspectives in development of zinc-electrode mate rials and fabrication for rechargeable zinc–air batteries" Energy & Environmental Science 11(11): 3075–3095. DOI: 10.1039/C8EE01991F.
  26. [26] J. F. Parker, J. S. Ko, D. R. Rolison, and J. W. Long, (2018) “Translating Materials-Level Performance into Device-Relevant Metrics for Zinc-Based Batteries" Joule 2(12): 2519–2527. DOI: 10.1016/j.joule.2018.11.007.
  27. [27] D. E. Turney, J. W. Gallaway, G. G. Yadav, R. Ramirez, M. Nyce, S. Banerjee, Y.-c. K. Chen-Wiegart, J. Wang, M. J. D’Ambrose, S. Kolhekar, J. Huang, and X. Wei, (2017) “Rechargeable Zinc Alkaline Anodes for Long Cycle Energy Storage" Chemistry of Materials 29(11): 4819–4832. DOI: 10.1021/acs.chemmater.7b00754.
  28. [28] J. Pan, Y. Y. Xu, H. Yang, Z. Dong, H. Liu, and B. Y. Xia, (2018) “Advanced Architectures and Relatives of Air Electrodes in Zn–Air Batteries" Advanced Science 5(4): 1700691. DOI: 10.1002/advs.201700691.
  29. [29] K. Wang, Y. Zuo, P. Pei, X. Liu, M. Wei, Y. Xiao, J. Xiong, and P. Zhang, (2021) “Zn–Ni reaction in the alkaline zinc-air battery using a nickel-supported air electrode" Materials Today Energy 21: 100823. DOI: 10. 1016/j.mtener.2021.100823.
  30. [30] K. Wang, P. Pei, Y. Wang, C. Liao, W. Wang, and S. Huang, (2018) “Advanced rechargeable zinc-air battery with parameter optimization" Applied Energy 225: 848 856. DOI: 10.1016/j.apenergy.2018.05.071.
  31. [31] Y.-P. Deng, Y. Jiang, R. Liang, S.-J. Zhang, D. Luo, Y. Hu, X. Wang, J.-T. Li, A. Yu, and Z. Chen, (2020) “Dynamic electrocatalyst with current-driven oxyhydroxide shell for rechargeable zinc-air battery" Nature Communications 11(1): 1952. DOI: 10.1038/s41467-020-15853 1.
  32. [32] H. Pan, Y. Shao, P. Yan, Y. Cheng, K. S. Han, Z. Nie, C. Wang, J. Yang, X. Li, P. Bhattacharya, K. T. Mueller, and J. Liu, (2016) “Reversible aqueous zinc/manganese oxide energy storage from conversion reactions" Nature Energy 1(5): 16039. DOI: 10.1038/nenergy.2016.39.


    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.