Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Muhammad Rizal1,2This email address is being protected from spambots. You need JavaScript enabled to view it., Nurdin Ali1, Husni Usman1, Muhammad Livuri Litusarfi1, and Mohd. Shahir Kasim2

1Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Syiah Kuala (USK), 23111, Darussalam, Banda Aceh, Indonesia

2Faculty of Innovative Design and Technology, Universiti Sultan Zainal Abidin, 21300, Terengganu, Malaysia


 

Received: October 23, 2025
Accepted: November 30, 2025
Publication Date: December 21, 2025

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202607_30.010  


The increasing demand for environmentally friendly composite materials has driven the use of recycled textile fibers, such as outworn denim. However, beyond the type of fiber used, the overall performance of composites is strongly influenced by the fabrication technique, and the appropriate processing method for producing high-performance denim fiber-reinforced composites remains uncertain. Therefore, this study aims to evaluate and compare the effects of vacuum infusion and compression molding on the physical, water absorption, and mechanical characteristics of recycled denim fabric reinforced polymer composites (DFRPC). The experimental results reveal that composites manufactured using vacuum infusion exhibited higher tensile strength ( 53 MPa). In contrast, composites produced through compression molding demonstrated superior flexural strength ( 60.9 MPa ), a higher critical buckling load ( 0.79 kN ), and lower density and water absorption. These findings highlight that the choice of fabrication method plays a decisive role in defining the structural performance of denim fabric reinforced polymer composites.


Keywords: Denimfabric reinforce polymer composite (DFRPC); vacuum infusion; compression molding; mechanical properties


  1. [1] J. Qureshi, (2022) “A Review of Fibre Reinforced Polymer Structures" Fibers 10(3): 27. DOI: 10.3390/fib11050040.
  2. [2] S. Waghmare, S. Shelare, K. Aglawe, and P. Khope, (2022) “A Mini Reviewon Fibre Reinforced Polymer Composites" Materials Today: Proceedings 54(3): 682–689. DOI: 10.1016/j.matpr.2021.10.379.
  3. [3] F. Han, H. Wang, and J. Zhang, (2025) “Applications and Development of Infrared Inspection of Composite Materials: In Review" Journal of Applied Science and Engineering 29(5): 1053–1062. DOI: 10.6180/jase.202605_29(5).0003.
  4. [4] T.Mishra,P.Mandal,A.K.Rout,andD.Sahoo,(2022) “A State-of-the-Art Review on Potential Applications of Natural Fiber-Reinforced Polymer Composite Filled with Inorganic Nanoparticle" Composites Part C: Open Ac cess 9: 100298. DOI: 10.1016/j.jcomc.2022.100298.
  5. [5] S. Sugiman, P. D. Setyawan, M. Maryudi, and S. Mad nasri, (2021) “Water Absorption, Tensile, Flexural and Impact Properties of Aged Bamboo Fibre/Nano CaCO3 Modified Unsaturated Polyester Composites" Journal of Applied Science and Engineering 24(2): 239–251. DOI: 10.6180/jase.202104_24(2).0013.
  6. [6] N. H. Sari, E. Syafri, W. Fatriasari, and A. Karimah, (2023) “Comprehensive Characterization of Novel Cellulose Fiber from Paederia Foetida and Its Modification for Sustainable Composites Application" Journal of Ap plied Science and Engineering 26(10): 1399–1408. DOI: 10.6180/jase.202310_26(10).0005.
  7. [7] M.R.Bambach,(2020) “Direct Comparison of the Structural Compression Characteristics of Natural and Syn thetic Fiber-Epoxy Composites: Flax, Jute, Hemp, Glass and Carbon Fibers" Fibers 8(10): 62. DOI: 10.3390/fib8100062.
  8. [8] M. Y. Khalid, A. Al Rashid, Z. U. Arif, W. Ahmed, H. Arshad, and A. A. Zaidi, (2021) “Natural Fiber Reinforced Composites: Sustainable Materials for Emerging Applications" Results in Engineering 11: 100263. DOI: 10.1016/j.rineng.2021.100263.
  9. [9] A. R. Shafqat, M. Hussain, Y. Nawab, M. Ashraf, S. Ahmad,andG.Batool,(2023)“Circularity in Materials: A Review on Polymer Composites Made from Agriculture and Textile Waste" International Journal of Polymer Science: 5872605. DOI: 10.1155/2023/5872605.
  10. [10] A. Patti, G. Cicala, and D. Acierno, (2021) “Eco Sustainability of the Textile Production: Waste Recovery and Current Recycling in the Composites World" Polymers 13: 134. DOI: 10.3390/polym13010134.
  11. [11] R. Li, J. Wei, S. Xu, Q. Zhu, W. Liu, Y. Qiu, and Q. Jiang, (2019) “Full-Degradable Composites Reinforced by the Low Temperature Treated Cotton Fabrics with Enhanced Strength and Interfacial Bonding" Composites Part B: Engineering 177: 107269. DOI: 10.1016/j.compositesb.2019.107269.
  12. [12] E. Sarıo˘glu and O. Babaarslan, (2017) “A Comparative Strength Analysis of Denim Fabrics Made from Core Spun Yarns Containing Textured Microfilaments" Journal of Engineered Fibers and Fabrics 12(1): 22–32. DOI: 10.1177/155892501701200103.
  13. [13] B. Wei, F. Xu, S. W. Azhar, W. Li, L. Lou, W. Liu, and Y. Qiu, (2015) “Fabrication and Property of Dis carded Denim Fabric/Polypropylene Composites" Journal of Industrial Textiles 44(5): 798–812. DOI: 10.1177/1528083714550055.
  14. [14] B. Baghaei, B. Johansson, M. Skrifvars, and N. Kadi, (2022) “All-Cellulose Composites Properties from Pre and Post-Consumer Denim Wastes: Comparative Study" Journal of Composites Science 6: 130. DOI: 10.3390/JCS6050130.
  15. [15] Z. Kamble and B. K. Behera, (2022) “Mechanical Properties and Water Absorption Characteristics of Composites Reinforced with Cotton Fibres Recovered from Textile Waste" Journal of Engineered Fibers and Fabrics 15: 2026S–2052S. DOI: 10.1177/1558925020901530.
  16. [16] S. S. Shifa, M. M. H. Kanok, M. S. Haque, T. Sul tan, K. F. Pritha, Mubasshira, M. A. Yeamin, and S. D. Dipta, (2024) “Influence of Heat Treatment and Water Ab sorption on Mechanical Properties of Cotton-Glass Fiber Reinforced Epoxy Hybrid Composites: An Eco-Friendly Approach for Industrial Materials" Hybrid Advances 5: 100181. DOI: 10.1016/j.hybadv.2024.100181.
  17. [17] A. Mandal, A. Habib, B. Paul, M. Islam, B. Ahamed, S. Islam, and F. Sarker, (2024) “Integration of Recycled Denim Waste Cotton Fibre and Jute Fibre in Thermoplas tic Bio Composite Applications" Results in Materials 23: 100611. DOI: 10.1016/j.rinma.2024.100611.
  18. [18] A. Gholampour and T. Ozbakkaloglu, (2020) “A Re view of Natural Fiber Composites: Properties, Modification and Processing Techniques, Characterization, Applications" Journal of Materials Science 55: 829–892. DOI: 10.1007/s10853-019-03990-y.
  19. [19] S. A. Hadigheh, R. J. Gravina, and S. Setunge, (2016) “Influence of the Processing Techniques on the Bond Characteristics in Externally Bonded Joints: Experimental and Analytical Investigations" Journal of Composites for Construction 20(3): 1–13. DOI: 10.1061/(ASCE)CC.1943-5614.0000646.
  20. [20] A. Esnaola, I. Tena, I. Saenz-Dominguez, J. Aurrekoetxea, I. Gallego, and I. Ulacia, (2018) “Effect of the Manufacturing Process on the Energy Absorption Capability of GFRP Crush Structures" Composite Structures 187: 316–324. DOI: 10.1016/j.compstruct.2017.12.079.
  21. [21] R. Ciardiello, D. Fiumarella, and G. Belingardi, (2023) “Enhancement of the Mechanical Performance of Glass Fibre-Reinforced Composites through the Infusion Process of a Thermoplastic Recyclable Resin" Polymers 15: 3160. DOI: 10.3390/polym15153160.
  22. [22] C. R. Raajeshkrishna and P. Chandramohan, (2020) “Effect of Reinforcements and Processing Method on Mechanical Properties of Glass and Basalt Epoxy Composites" SN Applied Sciences 2: 959. DOI: 10.1007/s42452-020-2774-4.
  23. [23] A. A. Talabari, M. H. Alaei, and H. R. Shalian, (2019) “Experimental Investigation of Tensile Properties in a Glass/Epoxy Sample Manufactured by Vacuum Infusion, Vacuum Bag and Hand Layup Process" Journal of Composite & Advanced Materials 29(3): 179–182. DOI: 10.18280/rcma.290308.
  24. [24] X. Meng, W. Fan, Y. Ma, T. Wei, H. Dou, X. Yang, H. Tian, Y. Yu, T. Zhang, and L. Gao, (2020) “Re cycling of Denim Fabric Wastes into High-Performance Composites Using the Needle-Punching Nonwoven Fabri cation Route" Textile Research Journal 90(5–6): 695 709. DOI: 10.1177/0040517519870317.
  25. [25] J. Oztemur, H. Sezgin, and I. Yalcin-Enis, (2021) “De sign of an Impact Absorbing Composite Panel from Denim Wastes and Acrylated Epoxidized Soybean Oil Based Epoxy Resins" Tekstilve Konfeksiyon 31(3): 228–234. DOI: 10.32710/tekstilvekonfeksiyon.910676.
  26. [26] J. T. Lee, M. W. Kim, Y. S. Song, T. J. Kang, and J. R. Youn, (2010) “Mechanical Properties of Denim Fabric Reinforced Poly(Lactic Acid)" Fibers and Polymers 11(1): 60–66. DOI: 10.1007/s12221-010-0060-6.
  27. [27] G. Mouna, J. Boubaker, and S. Faouzi, (2015) “Effect of Friction Parameters on the Residual Bagging Behavior of Denim Fabrics" International Journal of Applied Research on Textile 3(1): 32–43.
  28. [28] ASTMInternational. Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials (ASTM D790). Tech. rep. West Conshohocken, PA: ASTM International, 2010.
  29. [29] ASTM International. Standard Test Method for Axial Compression Test of Reinforced Plastic and Polymer Matrix Composite Vertical Members (ASTM E2954). Tech. rep. West Conshohocken, PA: ASTM International, 2022.
  30. [30] S.Sugiman,P.D.Setyawan,andA.D.C.Thongchom, (2022) “Effects of Nano CaCO3 on the Water Absorption, Tensile and Impact Properties of Unsaturated Polyester Composites" Journal of Applied Science and Engineering 25(3): 465–472. DOI: 10.6180/jase.202206_ 25(3).0013.
  31. [31] C. L. Hong, C. M. Yeng, K. S. Chun, and O. T. Kiat, (2024) “Denim Fabric-reinforced Unsaturated Polyester: Effect and Water Absorption Properties" Polymer Bulletin 81: 2545–2563. DOI: 10.1007/s00289-023-04845-y.
  32. [32] A. B. M. Supian, M. Jawaid, B. Rashid, H. Fouad, N. Saba, H. N. Dhakal, and R. Khiari, (2021) “Mechanical and Physical Performance of Date Palm/Bamboo Fibre Reinforced Epoxy Hybrid Composites" Journal of Mate rials Research and Technology 15: 1330–1341. DOI: 10.1016/j.jmrt.2021.08.115.
  33. [33] R. Temmink, B. Baghaei, and M. Skrifvars, (2018) “Development of Biocomposites from Denim Waste and Thermoset Bio-Resins for Structural Applications" Composites Part A: Applied Science and Manufacturing 106: 59–69. DOI: 10.1016/j.compositesa.2017.12.011.
  34. [34] M. Rizal, A. Z. Mubarak, and T. R. Alhaidar, (2023) “A Comparative Study of the Static and Dynamic Characteristics of Jute and Glass Fiber-Reinforced Polyester Composites" Experimental Techniques 48: 229–237. DOI: 10.1007/s40799-023-00655-z.


    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.