- [1] W.Farag, (2019) “Safe-driving cloning by deep learning for autonomous cars" International Journal of Advanced Mechatronic Systems 7(6): 390–397.
- [2] W. Farag and Z. Saleh. “Road Lane-Lines Detection in Real-Time for Advanced Driving Assistance Sys tems”. In: Proceedings of the International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT’18). Bahrain, 2018.
- [3] W. Farag, (2019) “Traffic signs classification by deep learning for advanced driving assistance systems" Intelligent Decision Technologies 13(3): 215–231.
- [4] W. Farag and Z. Saleh. “An Advanced Vehicle Detection and Tracking Scheme for Self-Driving Cars”. In: 2nd Smart Cities Symposium (SCS’19). Bahrain: IET Digital Library, 2019.
- [5] W.Farag,(2018) “Recognition of traffic signs by convolutional neural nets for self-driving vehicles" International Journal of Knowledge-based and Intelligent Engineering Systems 22(3): 205–214.
- [6] W. Farag and Z. Saleh. “Behavior Cloning for Autonomous Driving using Convolutional Neural Net works”. In: Proceedings of the International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT’18). Bahrain, 2018.
- [7] W. Farag and Z. Saleh. “Tuning of PID Track Followers for Autonomous Driving”. In: Proceedings of the International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT’18). Bahrain, 2018.
- [8] K. Patel, H. Lin, A. Berger, W. Farag, and A. Khan. “EDC draft force based ride controller”. US Patent 6,196,327. 2001.
- [9] K. Shao, J. Zheng, and K. Huang, (2019) “Robust active steering control for vehicle rollover prevention" Inter national Journal of Modelling, Identification, and Control 32(1): 70–84.
- [10] A.I.,I.Cervantes,andF.J.,(2021)“LocalPathPlanning for Autonomous Vehicles Based on the Natural Behavior of the Biological Action-Perception Motion" Energies 15(5): DOI: 10.3390/en15051769.
- [11] L. Claussmann, M. Revilloud, D. Gruyer, and S. Glaser, (2020) “A Review of Motion Planning for High way Autonomous Driving" IEEE Transactions on Intelligent Transportation Systems 21(5): 1826–1848. DOI: 10.1109/TITS.2019.2913998.
- [12] W.A.Farag, (2021) “Kalman-filter-based sensor fusion applied to road-objects detection and tracking for autonomous vehicles" Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering:
- [13] W. A. Farag, (2020) “A lightweight vehicle detection and tracking technique for advanced driving assistance systems" Journal of Intelligent & Fuzzy Systems 39(3):
- [14] W.Farag, (2021) “Multiple Road-Objects Detection and Tracking for Autonomous Driving" Journal of Engineering Research: DOI: 10.36909/jer.10993.
- [15] W.A.Farag, (2020) “Real-Time Detection of Road Lane Lines for Autonomous Driving" Recent Advances in Computer Science and Communications 13(2): 265–274.
- [16] J. S. Tjiharjadi, S. Razali, and H. A. Sulaiman, (2022) “A Systematic Literature Review of Multi-agent Pathfinding for Maze Research" Journal of Advances in Information Technology 13(4): 358–367.
- [17] W.Farag, (2021) “Real-Time Autonomous Vehicle Localization Based on Particle and Unscented Kalman Filters" Journal of Control, Automation and Electrical Systems 32(2): 309–325. DOI: 10.1007/s40313-020-00666-w.
- [18] M. Reda, A. Onsy, A. Y. Haikal, and A. Ghanbari, (2024) “Path Planning Algorithms in the Autonomous Driving System: A Comprehensive Review" Robotics and Autonomous Systems174:104630. DOI:10.1016/j.robot.2024.104630.
- [19] W. Farag, (2020) “Complex track maneuvering using real-time MPC control for autonomous driving" International Journal of Computing and Digital Systems 90(5): DOI: 10.12785/ijcds/090511.
- [20] J. Ricardo and C. J., (2020) “Path Planning for Autonomous Mobile Robots: A Review" Sensors 21(23): DOI: 10.3390/s21237898.
- [21] W. Xu, Q. Wang, and J. M. Dolan. “Autonomous Vehicle Motion Planning via Recurrent Spline Opti mization”. In: 2021 IEEE International Conference on Robotics and Automation (ICRA). 2021, 7730–7736. DOI: 10.1109/ICRA48506.2021.9560867.
- [22] W. Farag, (2021) “Complex-Track Following in Real Time Using Model-Based Predictive Control" Interna tional Journal ofIntelligent Transportation Systems Research 19(1): 112–127. DOI: 10.1007/s13177-020 00226-1.
- [23] W. Farag, (2021) “Real-time NMPC path tracker for autonomous vehicles" Asian Journal of Control 23(4): DOI: 10.1002/asjc.2335.
- [24] J. Wen, X. Zhang, Q. Bi, H. Liu, J. Yuan, and Y. Fang, (2024) “G2VD Planner: Efficient Motion Planning With Grid-based Generalized Voronoi Diagrams" IEEE Trans actions on Automation Science and Engineering:
- [25] C.S.Tan,R.Mohd-Mokhtar,andM.R.Arshad,(2021) “A Comprehensive Review of Coverage Path Planning in Robotics Using Classical and Heuristic Algorithms" IEEE Access 9: 119310–119342. DOI: 10.1109/ACCESS.2021.3108172.
- [26] P. Qin, F. Liu, Z. Guo, Z. Li, and Y. Shang, (2023) “Hierarchical Collision-free Trajectory Planning for Autonomous Vehicles Based on Improved Artificial Potential Field Method" Transactions of the Institute of Measurement and Control: DOI: 10.1177/01423312231186684.
- [27] M. R. Siddiqi, S. Milani, R. N. Jazar, and H. Marzbani, (2022) “Ergonomic Path Planning for Autonomous Vehicles-An Investigation on the Effect of Transition Curves on Motion Sickness" IEEE Transactions on Intelligent Transportation Systems 23(7): 7258–7269. DOI: 10.1109/TITS.2021.3067858.
- [28] X. Qian, I. Navarro, A. de La Fortelle, and F. Moutarde. “Motion planning for urban autonomous driving using B’ezier curves andMPC”.In:2016IEEE 19th International Conference on Intelligent Transportation Systems (ITSC). 2016, 826–833. DOI: 10.1109/ITSC. 2016.7795651.
- [29] W. A. Farag, V. H. Quintana, and G. Lambert-Torres. “Genetic algorithms and back-propagation: a comparative study”. In: IEEE Canadian Conference on Electrical and Computer Engineering. 1998, 93–96. DOI: 10.1109/ CCECE.1998.682559.
- [30] A. Rucco, P. Sujit, A. P. Aguiar, J. B. De Sousa, and F. L. Pereira, (2017) “Optimal rendezvous trajectory for unmanned aerial-ground vehicles" IEEE Transactions on Aerospace and Electronic Systems 54(2): 834–847.
- [31] P. Lin, E. Javanmardi, and M. Tsukada, (2024) “Clothoid Curve-based Emergency-Stopping Path Planning with Adaptive Potential Field for Autonomous Vehicles" IEEE Transactions on Vehicular Technology: DOI: 10.1109/TVT.2024.3380745.
- [32] J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli. “Kinematic and Dynamic Vehicle Models for Autonomous Driving”. In: IEEE Intelligent Vehicles Sym posium (IV). Seoul, South Korea, 2015.
- [33] A.-N. Sharkawy. “Minimum Jerk Trajectory Gener ation for Straight and Curved Movements: Mathematical Analysis”. In: Advances in Robotics: Reviews. 2. IFSA Publishing, S. L., 2021, 187–201.
- [34] J. Dalle, D. Hastuti, and M. R. A. Prasetya, (2021) “The Use of an Application Running on the Ant Colony Algorithm in Determining the Nearest Path between Two Points" Journal of Advances in Information Technology 12(3): 206–213. DOI: 10.12720/jait.12.3.206 213.
- [35] W. Farag and M. Nadeem, (2024) “Enhanced real-time road-vehicles’ detection and tracking for driving assistance" International Journal of Knowledge-based and Intelligent Engineering Systems 28: 335–357.
- [36] Eigen Community. Eigen C++ Library. http://eigen. tuxfamily.org/index.php?title=Main_Page. Ac cessed: Oct. 31, 2024.
- [37] X. Wang, X. Qi, P. Wang, et al., (2021) “Decision making framework for autonomous vehicles driving behavior in complex scenarios via hierarchical state machine" Autonomous Intelligent Systems 1(10): DOI: 10.1007/s43684-021-00015-x.
- [38] M. Werling, J. Ziegler, S. Kammel, and S. Thrun. “Optimal trajectory generation for dynamic street scenarios in a Frenet Frame”. In: IEEE International Conference on Robotics and Automation (ICRA). 2010.
- [39] J. Ziegler et al., (2014) “Making Bertha Drive—An Autonomous Journey on a Historic Route" IEEE Intelligent Transportation Systems Magazine 6(2): 8–20. DOI: 10.1109/MITS.2014.2306552.
- [40] D. Kim, G. Kim, H. Kim, and K. Huh, (2022) “A Hierarchical Motion Planning Framework for Autonomous Driving in Structured Highway Environments" IEEE Access 10: 20102–20117. DOI: 10.1109/ACCESS.2022.3152187.
- [41] B. Paden, M. ˇ Cáp, S. Z. Yong, D. Yershov, and E. Fraz zoli, (2016) “A Survey of Motion Planning and Control Techniques for Self-Driving Urban Vehicles" IEEE Transactions on Intelligent Vehicles 1(1): 33–55. DOI: 10.1109/TIV.2016.2578706.
- [42] D. González, J. Pérez, V. Milanés, and F. Nashashibi, (2016) “A Review of Motion Planning Techniques for Automated Vehicles" IEEE Transactions on Intelligent Transportation Systems 17(4): 1135–1145. DOI: 10.1109/TITS.2015.2498841.
- [43] H. Wang, S. Lou, J. Jing, Y. Wang, W. Liu, and T. Liu, (2022) “The EBS-A* Algorithm: An Improved A* Algorithm for Path Planning" PLOS ONE 17(2): e0263841. DOI: 10.1371/journal.pone.0263841.
- [44] T. Chang and G. Tian, (2023) “Hybrid A-Star Path Planning Method Based on Hierarchical Clustering and Trichotomy" Applied Sciences 14(13): 5582. DOI: 10.3390/app14135582.
- [45] H. Wang, X. Zhou, J. Li, Z. Yang, and L. Cao, (2023) “Improved RRT* Algorithm for Disinfecting Robot Path Planning" Sensors 24(5): 1520. DOI: 10.3390/ s24051520.
- [46] F. Yang, X. Fang, F. Gao, X. Zhou, H. Li, H. Jin, and Y. Song, (2021) “Obstacle Avoidance Path Planning for UAV Based on Improved RRT Algorithm" Discrete Dynamics in Nature and Society 2022(1): 4544499. DOI: 10.1155/2022/4544499.
- [47] L. Zheng, P. Zeng, W. Yang, Y. Li, and Z. Zhan, (2020) “BéZier Curve-based Trajectory Planning for Autonomous Vehicles with Collision Avoidance" IET Intelligent Transport Systems 14(13): 1882–1891. DOI: 10.1049/iet-its.2020.0355.
- [48] W. Farag. “Synthesis of intelligent hybrid systems for modeling and control". Accessed: Feb. 17, 2024. (phdthesis). Waterloo, Ontario, Canada: University of Waterloo, 1998.
- [49] W. A. Farag, V. H. Quintana, and G. Lambert-Torres. “Neuro-fuzzy modeling of complex systems using genetic algorithms”. In: Proceedings of International Conference on Neural Networks (ICNN’97). 1. Houston, TX, USA, 1997, 444–449. DOI: 10.1109/ICNN.1997.611709.
- [50] W.Farag, (2020) “Road-objects tracking for autonomous driving using lidar and radar fusion" Journal of Electrical Engineering 71(3): 138–149. DOI: 10.2478/jee-2020-0021.
- [51] W. A. Farag and M. Fayed, (2025) “Advancing vehicle detection for autonomous driving: integrating computer vision and machine learning techniques for real-world deployment" Journal of Control and Decision: DOI: 10.1080/23307706.2025.2469893.
- [52] W. A. Farag and M. Helal, (2024) “Real-time localization with probabilistic maps and unscented Kalman filtering: a dynamic sensor fusion approach" Journal of Control and Decision: DOI: 10.1080/23307706.2024.2417218.
- [53] W. Farag, (2021) “Real-time lidar and radar fusion for road-objects detection and tracking" International Journal of Computational Science and Engineering 24(5): 517–529. DOI: 10.1504/IJCSE.2021.118100.
- [54] W.A.Farag, (2020) “A Comprehensive Real-Time Road Lanes Tracking Technique for Autonomous Driving" International Journal of Computing and Digital Systems 9(3): 349–362. DOI: 10.12785/ijcds/090302.