Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Wilaiphorn Nokklang1, Pattasad Saengwong2, Apirat Siritaratiwat2, and Warat Sriwannarat1This email address is being protected from spambots. You need JavaScript enabled to view it.

1the Department of Electrical and Computer Engineering, Faculty of Science and Engineering, Kasetsart University Chalermphakiet Sakon Nakhon Campus, Sakon Nakhon 47000, Thailand

2the Department of Electrical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand


 

Received: August 5, 2025
Accepted: October 26, 2025
Publication Date: November 20, 2025

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202606_29(6).0018  


High cogging torque caused by a fluctuating magnetic flux distribution in the partitioned stator doubly salient permanent magnet machines (PS-DSPM), due to their double air gap design, limits their application despite excellent torque density characteristics. This paper targets cogging-torque minimization through flux-modulated rotor design that shapes specific f lux-density harmonics in PS-DSPM. The designs of flux-modulated rotors are presented and analyzed, with a detailed explanation of the behavior of the air-gap flux density and its harmonic content driving cogging torque. The simulation result using the 2D finite element method shows that the cogging torque variation with designs of the flux-modulated rotors is identified by the specific air-gap flux-density harmonics. The flux-modulated rotors, classified into three designs, indicate that the designed III ( θo > θi ) produces better effective cogging torque, which is 85.35% and limits the ripple torque to 5.36% when compared to the conventional PS-DSPM structures. These improvements enhance starting performance and reduce acoustic noise while preserving torque density advantages. Therefore, the proposed flux modulation technique is broadly applicable to other double air gap machine topologies to minimize the cogging torque.


Keywords: Flux-modulated rotor, flux density harmonics, partitioned stator permanent, magnet machine, cogging torque minimization.


  1. [1] C. Zhao, M. Cheng, Y. Wang, S. De, S. Shi, C. Song, and Z. Wang, (2024) “Analytical Method of Stator Modal Analysis for Stator-Permanent Magnet Machines" IEEE Transactions on Transportation Electrification 11(1): 2088–2096. doi: 10.1109/TTE.2024.3416187.
  2. [2] H. Chen, A. M. El-Refaie, and N. A. Demerdash, (2019) “Flux-switching permanent magnet machines: A review of opportunities and challenges—Part I: Fundamentals and topologies" IEEE Transactions on Energy Conversion 35(2): 684–698. doi: 10.1109/TEC.2019.2956600.
  3. [3] H. Chen, A. M. EL-Refaie, and N. A. Demerdash, (2019) “Flux-switching permanent magnet machines: A review of opportunities and challenges-part II: Design aspects, control, and emerging trends" IEEE Transactions on Energy Conversion 35(2): 699–713. doi: 10.1109/TEC.2019.2956565.
  4. [4] V. I. Vlachou, G. K. Sakkas, F. P. Xintaropoulos, M. S. C. Pechlivanidou, T. D. Kefalas, M. A. Tsili, and A. G. Kladas, (2024) “Overview on permanent magnet motor trends and developments" Energies 17(2): 538. doi: 10.3390/en17020538.
  5. [5] D. Wu, J. T. Shi, Z. Zhu, and X. Liu, (2014) “Electromagnetic performance of novel synchronous machines with permanent magnets in stator yoke" IEEE Transactions on Magnetics 50(9): 1–9. doi: 10.1109/TMAG.2014.2317794.
  6. [6] S. Cai, J. L. Kirtley, and C. H. Lee, (2022) “Critical review of direct-drive electrical machine systems for electric and hybrid electric vehicles" IEEE Transactions on Energy Conversion 37(4): 2657–2668. doi: 10.1109/TEC.2022.3197351.
  7. [7] Z. Wu, Z. Zhu, and J. Shi, (2015) “Novel doubly salient permanent magnet machines with partitioned stator and iron pieces rotor" IEEE Transactions on Magnetics 51(5): 1–12. doi: 10.1109/TMAG.2015.2404826.
  8. [8] Z. Q. Zhu,(2018) “Overview of novel magnetically geared machines with partitioned stators" IET Electric Power Applications 12(5): 595–604. doi: 10.1049/iet-epa.2017.0680.
  9. [9] H. Yang, H. Zheng, Z. Zhu, H. Lin, S. Lyu, and Z. Pan, (2019) “Comparative study of partitioned stator memory machines with series and parallel hybrid PM configurations" IEEE Transactions on Magnetics 55(7): 1–8. doi: 10.1109/TMAG.2019.2894833.
  10. [10] Y. Du, Y. Mao, F. Xiao, X. Zhu, L. Quan, and F. Li, (2021) “Partitioned stator hybrid excited machine with DC-biased sinusoidal current" IEEE Transactions on Industrial Electronics 69(1): 236–248. doi: 10.1109/TIE.2021.3053901.
  11. [11] Z. Zhu, H. Hua, D. Wu, J. Shi, and Z. Wu, (2015) “Comparative study of partitioned stator machines with different PMexcitation stators" IEEE Transactions on Industry Applications 52(1): 199–208. doi: 10.1109/TIA.2015.2477055.
  12. [12] L. Wu, G. Ming, L. Zhang, and Y. Fang, (2020) “Improved stator/rotor-pole number combinations for torque ripple reduction in doubly salient PM machines" IEEE Trans actions on Industrial Electronics 68(11): 10601–10611. doi: 10.1109/TIE.2020.3032926.
  13. [13] C.-S. Lee and H.-J. Kim, (2022) “Harmonic order analysis of cogging torque for interior permanent magnet synchronous motor considering manufacturing disturbances" Energies 15(7): 2428. doi: 10.3390/en15072428.
  14. [14] X. Zhu, W. Hua, and G. Zhang, (2019) “Analysis and re duction of cogging torque for flux-switching permanent magnet machines" IEEE Transactions on Industry Ap plications 55(6): 5854–5864. doi: 10.1109/TIA.2019.2938721.
  15. [15] J. Chen, J. Yang, W. Liu, G. Yang, and C. Zhang, (2025) “Effect of Flux Density Harmonics on Torque Characteristics of Integer Slot and Fractional Slot PMSMs" IEEE Transactions on Energy Conversion: doi: 10.1109/TEC.2025.3525504.
  16. [16] L. Jing, W. Tang, W. Liu, Y. Rao, C. Tan, and R. Qu, (2022) “A double-stator single-rotor magnetic field modulated motor with HTS bulks" IEEE Transactions on Applied Superconductivity 32(6): 1–5. doi: 10.1109/TASC.2022.3153242.
  17. [17] Z. Ding, C. He, C. Feng, and J. Yang, (2022) “A new dual stator permanent magnet machine based on field modulation theory" Sustainability 15(1): 281. doi: 10.3390/su15010281.
  18. [18] D. Brodnevs and A. Serebrjakovs. “Influence of the rotor tooth longitudinal section shape on the characteristics of inductor alternator”. In: 2022 IEEE 63th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON). IEEE. 2022, 1–6. doi: 10.1109/RTUCON56726.2022.9978836.
  19. [19] H. Sun and K. Wang, (2018) “Effect of third harmonic f lux density on cogging torque in surface-mounted permanent magnet machines" IEEE Transactions on Industrial Electronics 66(8): 6150–6158. doi: 10.1109/TIE.2018.2875639.
  20. [20] M. Kimiabeigi, J. D. Widmer, R. Long, Y. Gao, J. Goss, R. Martin, T. Lisle, J. S. Vizan, A. Michaelides, and B. Mecrow, (2015) “High-performance low-cost electric motor for electric vehicles using ferrite magnets" IEEE Transactions on Industrial Electronics 63(1): 113–122. doi: 10.1109/TIE.2015.2472517.
  21. [21] L. Wang, S. Lu, and Y. Chen, (2023) “Two-dimensional analytical models for cogging torque prediction in interior permanent magnet machine" Machines 11(2): 233. doi: 10.3390/machines11020233.
  22. [22] M. Zhu, L. Wu, D. Liu, Y. Shen, R. Li, and H. Wen, (2025) “Comparative Study of Dual-Stator Permanent Magnet Ma chines with Different PM Arrangements and Rotor Topologies for Aviation Electric Propulsion" Machines 13(4): 273. doi: 10.3390/machines13040273.
  23. [23] C. Sikder, I. Husain, and W. Ouyang, (2015) “Cogging torque reduction in flux-switching permanent-magnet ma chines by rotor pole shaping" IEEE Transactions on Industry Applications 51(5): 3609–3619. doi: 10.1109/TIA.2015.2416238.
  24. [24] H. Li, M. Feng, L. Lei, Y. Geng, and J. Wang, (2024) “Re search on Cogging Torque Reduction of Direct-Drive Type Dual-Rotor Radial Flux Permanent Magnet Synchronous Motor for Electric Propulsion Aircraft" Energies 17(7): 1583. doi: 10.3390/en17071583.
  25. [25] A. Siritaratiwat, P. Seangwong, A. Butkaew, P. Khunkitti, and W.Sriwannarat, (2025) “In-depth analysis of magnetic f lux concentration indicator in novel curved slots of multi tooth dual-PM doubly salient machine" Scientific Reports 15(1): 13928. doi: 10.1038/s41598-025-99299-9.
  26. [26] X. Zhu, C. H. Lee, C. Chan, L. Xu, and W. Zhao, (2020) “Overview of flux-modulation machines based on flux modulation principle: Topology, theory, and development prospects" IEEE Transactions on Transportation Electrification 6(2): 612–624. doi: 10.1109/TTE.2020.2981899.
  27. [27] Z. Xiang, Y. Zhou, X. Zhu, L. Quan, D. Fan, and Q. Liu, (2023) “Research on characteristic airgap harmonics of a double-rotor flux-modulated PM motor based on harmonic dimensionality reduction" IEEE Transactions on Transportation Electrification 10(3): 5750–5761. doi: 10.1109/TTE.2023.3318648.
  28. [28] L. Wu, G. Ming, L. Zhang, Y. Fang, T. Li, and W. Zheng, (2021) “Comparative study between doubly salient PM machine with new stator/rotor-pole number combination and biased flux PM machine" IEEE Transactions on Industry Applications 57(3): 2354–2365. doi: 10.1109/TIA.2021.3058200.
  29. [29] H. Kim, Y. Han, K. Lee, and S. Bhattacharya, (2020) “A sinusoidal current control strategy based on harmonic voltage injection for harmonic loss reduction of PMSMs with non-sinusoidal back-EMF" IEEE transactions on industry applications 56(6): 7032–7043. doi: 10.1109/ TIA.2020.3016210.
  30. [30] E. Kontodinas, P. Karamanakos, A. Kraemer, and S. Wen del. “Optimized pulse patterns for synchronous machines with non-sinusoidal back-EMF”. In: 2023 25th Euro pean Conference on Power Electronics and Applications (EPE’23 ECCE Europe). IEEE. 2023, 1–9. doi: 10.23919/ EPE23ECCEEurope58414.2023.10264646.
  31. [31] Y. Cui, M. Faizan, and Z. Chen, (2021) “Back EMF wave form comparison and analysis of two kinds of electrical machines" World Electric Vehicle Journal 12(3): 149. doi: 10.3390/wevj12030149.
  32. [32] Y. Du, J. Zhao, F. Xiao, X. Zhu, L. Quan, and F. Li, (2021) “Partitioned stator hybrid excitation doubly salient machine with slot Halbach PM arrays" IEEE Transactions on Vehicular Technology 70(4): 3187–3196. doi: 10.1109/TVT.2021.3065670.
  33. [33] G. Ming, J. Yuan, S. Ma, J. Yang, L. Si, and W. Shen. “Performance Comparison of Stator Partitioned Doubly Salient Permanent Magnet Motors with Diverse Number of Permanent Magnets”. In: 2022 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific). IEEE. 2022, 1–6. doi: 10.1109/ITECAsia-Pacific56316.2022.9941909.
  34. [34] N. G. Ozcelik, U. E. Dogru, M. Imeryuz, and L. T. Ergene, (2019) “Synchronous reluctance motor vs. induction motor at low-power industrial applications: Design and comparison" Energies 12(11): 2190. doi: 10.3390/en12112190.
  35. [35] M. U. Naseer, A. Kallaste, B. Asad, T. Vaimann, and A. Rassõlkin, (2021) “A review on additive manufacturing possibilities for electrical machines" Energies 14(7): 1940. doi: 10.3390/en14071940.
  36. [36] S. A. A. S. Bukhari and V. Kumar, (2024) “Development of a Synchronous Reluctance Motor for Industrial application" Sukkur IBA Journal of Emerging Technologies 7(1): 15–23. doi: 10.30537/sjet.v7i1.1461.
  37. [37] G. Chen, J. Xia, J. H. Park, H. Shen, and G. Zhuang, (2021) “Robust sampled-data control for switched com plex dynamical networks with actuators saturation" IEEE Transactions on Cybernetics 52(10): 10909–10923. doi: 10.1109/TCYB.2021.3069813.
  38. [38] G. Chen, G. Du, J. Xia, X. Xie, and J. H. Park, (2023) “Controller synthesis of aperiodic sampled-data networked control system with application to interleaved flyback mod ule integrated converter" IEEE Transactions on Circuits and Systems I: Regular Papers 70(11): 4570–4580. doi: 10.1109/TCSI.2023.3295940.


    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.