Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Ho-Ming Yeh This email address is being protected from spambots. You need JavaScript enabled to view it.1 and Ching-Chun Hsu1

1Energy and Opto-Electronic Materials Research Center, Department of Chemical and Materials Engineering, Tamkang University, Tamsui, Taiwan 251, R.O.C.


 

Received: April 13, 2012
Accepted: May 17, 2013
Publication Date: September 1, 2013

Download Citation: ||https://doi.org/10.6180/jase.2013.16.3.12  


ABSTRACT


The effect of column number N, as well as the column height h of thermal diffusion columns, on the deuterium removal rate from water-isotope mixture in the countercurrent-flow Frazier scheme with total sum of column heights L (= Nh) fixed, has been investigated. The equations, which may be employed to predict the optimal numbers of column for the maximum performances, have been derived. Considerable improvement in deuterium removal rate is obtainable if the scheme is constructed with the optimal number of thermal diffusion columns, especially for large flow rate and smaller L.


Keywords: Thermal Diffusion, Frazier Scheme, Optimal Column Number, Recovery of Deuterium, Total Sum of Column Heights Fixed, Best Performance


REFERENCES


  1. [1] Korsching, H. and Wirtz, K., “Separation of Fluid Mixtures in the Clusius Separation Tube,” Naturwissenschaften, Vol. 27, pp. 367373 (1939).
  2. [2] Mitsui, J., Okada, Y., Sakai, F., Ide, T., Hirata, K., Yamanashi, T., Okuno, K., Naurse, Y., Yamamoto, I. and Kanagawa, A., “Separation of Hydrogen Isotope by an Advanced Thermal Diffusion Column Using Cryogenic-Wall,” Fusion Technol, Vol. 19, pp. 1646 1650 (1991).
  3. [3] Hirara, K., Matsumoto, A., Yamanishi, T., Okuno, K. and Yamamoto, I., “Separation of Hydrogen Isotope by the Cryogenic-Wall Thermal Diffusion Column,” Fusion Technol, Vol. 21, pp. 937941 (1992).
  4. [4] Matsumoto, A., Yamanishi, T., Okuno, K. and Naruse, Y., “Characteristics of the Cryogenic-Wall Thermal Diffusion Column for Separation of Hydrogen Isotopes,” Fusion Technol, Vol. 21, pp. 19591963 (1992).
  5. [5] Yeh, H. M., “Estimation of Deuterium Recovery from H-D Gas Mixture by Thermal Diffusion,” J. Nucl. Materials, Vol. 377, pp. 423426 (2008). doi: 10.1016/ j.jnucmat.2008.04.001
  6. [6] Frazier, D., “Analysis of Transverse-Flow Thermal Diffusion,” Ind. Eng. Chem. Process Dev., Vol. 1, pp. 237240 (1962). doi: 10.1021/i260004a001
  7. [7] Furry, W. H., Jones, R. C. and Onsager, L., “On the Theory of Isotopes Separation by Thermal Diffusion,” Phys. Rev., Vol. 55, pp. 10831095 (1939). doi: 10. 1103/PhysRev.55.1083
  8. [8] Jones, R. C. and Furry, W. H., “The Separation of Isotopes by Thermal Diffusion,” Rev. Mod. Phys., Vol. 18, No. 2, pp. 151224 (1946). doi: 10.1103/RevMod Phys.18.151
  9. [9] Rabinovic, G. D., “Theory of Thermodiffusion Separation According to the Frazier Scheme,” Inzh. Fiz. Zh., Vol. 31, pp. 514521 (1976).
  10. [10] Sovorov, A. V. and Rabinovic, G. D., “Theory of Thermal Diffusion Apparatus with Transverse Flow,” Inzh. Fiz. Zh., Vol. 41, pp. 231236 (1981).
  11. [11] Clusius, K. and Dickel, G., “Neues Verfahren zur Gasentmischung und Isotopentrennung,” Naturwissenschaften, Vol. 26, pp. 522546 (1938). doi: 10.1007/ BF01675498
  12. [12] Clusius, K. and Dickel, G., “Grundlagen Eines Neuen Verfahrenz zur Gasentimischung und Isotopentrennung Durch Thermodiffusion,” Z. Phys. Vhem., Vol. 55, pp. 10831098 (1939).
  13. [13] Cheuh, P. L. and Yeh, H. M., “Thermal Diffusion in a Flat-Plate Column,” AIChE J., Vol. 13, pp. 3741 (1967). doi: 10.1002/aic.690130109
  14. [14] Yeh, H. M., “Optimal Plate Aspect Ratio for the Enrichment of Heavy Water from Water-Isotope Mixture in a Flat-Plate Thermal Diffusion Column with Transverse Sampling Streams,” Nucl. Eng. Des., Vol. 239, pp. 12541259 (2009a) doi: 10.1016/j.nucengdes. 2009.03.007
  15. [15] Yeh, H. M., “Theory of Recovery of Deuterium from Water-Isotopes Mixture in Spiral Wired Thermal Diffusion Columns of the Frazier Schemes,” Nucl. Eng. Des., Vol. 239, pp. 22652271 (2009b). doi: 10.1016/ j.nucengdes.2009.07.019
  16. [16] Yeh, H. M., “Enrichment of Heavy Water in ThermalDiffusion Columns Connected in Series,” Nucl. Eng. Des., Vol. 239, pp. 28252831 (2009c). doi: 10.1016/ j.nucengdes.2009.09.034
  17. [17] Yeh, H. M. and Chen, L. Y., “Recovery of Deuterium from the Separation of Water-Isotope Mixture by Thermal Diffusion in the Frazier Scheme with Optimal Column Number,” J. Taiwan Inst. Chem. Engrs., Vol. 41, pp. 302306 (2010). doi: 10.1016/j.jtice.2009.11. 005
  18. [18] Yeh, H. M. and Yang, S. C., “The Enrichment of Heavy Water in a Batch-Type Thermal Diffusion Column,” Chem. Eng. Sci., Vol. 39, pp. 12771282 (1984). doi: 10.1016/0009-2509(84)85089-7
  19. [19] Yeh, H. M., “Enrichment of Heavy Water by Thermal Diffusion in Countercurrent-Flow Frazier Scheme Inclined for Improved Performance,” Sep. Sci. Technol., Vol. 36, pp. 30153026 (2001). doi: 10.1081/SS100107643


Latest Articles

    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.