Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

B. Sidda Redddy This email address is being protected from spambots. You need JavaScript enabled to view it.1, J. Suresh Kumar2, C. Eswara Reddy3 and K. Vijaya Kumar Reddy2

1School of Mechanical Engineering, R.G.M. College of Engineering &Technology, Nandyal, Kurnool (Dt), Andhra Pradesh, India-518 501
2Department of Mechanical Engineering, J.N.T.U.H. College of Engineering, J.N.T. University, Hyderabad, India
3The School of Engineering & Technology, SPMVV, Women’s University, Tirupati, Chittoor (Dt) A.P, India


 

Received: April 26, 2013
Accepted: June 6, 2014
Publication Date: September 1, 2014

Download Citation: ||https://doi.org/10.6180/jase.2014.17.3.03  


ABSTRACT


The prime aim of the present study is to develop analytical formulations and solutions for the free vibration analysis of functionally graded plates (FGPs) using higher order shear deformation theory (HSDT) without enforcing zero transverse shear stress on the top and bottom surfaces of the plate. The theoretical model presented herein incorporates the transverse extensibility which accounts for the transverse effects. The equations of equilibrium and boundary conditions are derived using the principle of virtual work. Solutions are obtained for FGPs in closed-form using Navier’s technique and solving the eigen value equation. The present results are compared with the solutions of the other HSDTs available in the literature. It can be concluded that the proposed theory is accurate and efficient in predicting the vibration behaivour of functionally graded plates.


Keywords: Vibration Analysis, Functionally Graded Plates, HSDT, Navier’s Method


REFERENCES


  1. [1] Mantari, J. L. and Guedes Soares, C., “A Novel Higher-Order Shear Deformation Theory with Stretching Effect for Functionally Graded Plates,” Composites: Part B, Vol. 45, pp. 268281 (2013). doi: 10.1016/j.compositesb.2013.07.027
  2. [2] Reddy, J. N. and Chin, C. D., “Thermomechanical Analysis of Functionally Graded Cylinders and Plates,” Journal of Thermal Stresses, Vol. 21, No. 6, pp. 593 626 (1998). doi: 10.1080/01495739808956165
  3. [3] Reddy, J. N., “Analysis of Functionally Graded Plates,” International Journal for Numerical Methods in Engineering, Vol. 47, pp. 663684 (2000).
  4. [4] Vel, S. S. and Batra, R. C., “Exact Solutions for Thermoelastic Deformations of Functionally Graded Thick Rectangular Plates,” AIAA Journal, Vol. 40, pp. 1421 1433 (2002). doi: 10.2514/2.1805
  5. [5] Vel, S. S. and Batra, R., “Three Dimensional Analysis of Transient Thermal Stresses in Functionally Graded Plates,” International Journal of Solids and Structures, Vol. 40, No. 25, pp. 71817196 (2003). doi: 10.1016/S0020-7683(03)00361-5
  6. [6] Cheng, Z. Q. and Batra, R. C., “Three Dimensional Thermoelastic Deformations of a Functionally GradedEliptic Plate,” Composites: Part B, Vol. 31, pp. 97 106 (2000). doi: 10.1016/S1359-8368(99)00069-4
  7. [7] Javaheri, R. and Eslami, Mr., “Thermal Buckling of Functionally Graded Plates Based on Higher Order Shear Deformation Theory,” Journal of Thermal Stresses, Vol. 25, No.7, pp. 603625 (2002). doi: 10.1080/01495730290074333
  8. [8] Reissner, E., “The Effect of Transverse Shear Deformation on the Bending of Elastic Plates,” ASME Journal of Applied Mechanics, Vol. 12, No. 2, pp. 6977 (1945).
  9. [9] Mindlin, R. D., “Influence of Rotary Inertia and Shear on Flexural Motions of Isotropic, Elastic Plates,” ASME Journal of Applied Mechanics, Vol. 18, pp. 3138 (1951).
  10. [10] Thai, H. T. and Thuc, P. Vo., “A New Sinusoidal Shear Deformation Theory for Bending, Buckling, and Vibration of Functionally Graded Paltes,” Applied Mathematical Modelling, Vol. 37, pp. 32693281 (2013). doi: 10.1016/j.apm.2012.08.008
  11. [11] Zenkour, A. M., “A Comprehensive Analysis of Functionally Graded Sandwich Plates: Part-1-Deflection and Stresses,” International Journal of Solids and Structures, Vol. 42, No. 1819, pp. 52245242 (2005). doi: 10.1016/j.ijsolstr.2005.02.015
  12. [12] Zenkour, A. M., “A Comprehensive Analysis of Functionally Graded Sandwich Plates: Part-2-Buckling and Free Vibration,” International Journal of Solids and Structures, Vol. 42, No. 1819, pp. 52435258 (2005). doi: 10.1016/j.ijsolstr.2005.02.016
  13. [13] Zenkour, A. M., “Generalized Shear Deformation Theory for Bending Analysis of Functionally Graded Plates,” Applied Mathematical Modelling, Vol. 30, No. 1, pp. 6784 (2006). doi: 10.1016/j.apm.2005.03.009
  14. [14] Kant, T., Owen, D. R. J. and Zienkiewicz, O. C., “A Refined Higher Order C0 Plate Element,” Computers and Structures, Vol. 15, No. 2, pp. 177183 (1982). doi: 10.1016/0045-7949(82)90065-7
  15. [15] Pandya, B. N. and Kant, T., “Higher-Order Shear Deformable Theories for Flexure of Sandwich PlatesFinite Element Evaluations,” International Journal of Solids and Structures, Vol. 24, No. 12, pp. 12671286 (1988). doi: 10.1016/0020-7683(88)90090-X
  16. [16] Pandya, B. N. and Kant, T., “Finite Element Analysis of Laminated Composite Plates Using a Higher Order Displacement Model,” Composites Science and Technology, Vol. 32, No. 2, pp. 137155 (1988). doi: 10.1016/0266-3538(88)90003-6
  17. [17] Kant, T. and Swaminathan, K., “Analytical Solutions for the Static Analysis of Laminated Composite and Sandwich Plates Based on Higher Order Refined Theory,” Composite Structures, Vol. 56, No. 4, pp. 329 344 (2002). doi: 10.1016/S0263-8223(02)00017-X
  18. [18] Kant, T. and Swaminathan, K., “Analytical Solutions for Free Vibration Analysis of Laminated Composite and Sandwich Plates Based on Higher Order Refined Theory,” Composite Structures, Vol. 53, No. 1, pp. 7385 (2001). doi: 10.1016/S0263-8223(00)00180-X
  19. [19] Kumar, G. A., Kumar, K. R. and Tarun, K., “Higher Order Closed Form Solutions for Free Vibration of Laminated Composite and Sandwich Shells,” Journal of Sandwich Structures and Materials, Vol. 8, No. 3, pp. 205235 (2006). doi: 10.1177/1099636206062569
  20. [20] Golmakani, M. E. and Kadkhodayan, M., “Nonlinear Bending Analysis of Annular FGM Plates Using Higher Order Shear Deformation Plate Theories,” Composite Structures, Vol. 93, pp. 973982 (2011). doi: 10.1016/ j.compstruct.2010.06.024
  21. [21] Matsunaga, H., “Free Vibration and Stability of Functionally Graded Plates According to a 2-D HigherOrder Deformation Theory,” Composite Structures, Vol. 82, pp. 499512 (2008). doi: 10.1016/j.compstruct. 2007.01.030
  22. [22] Matsunaga, H., “Stress Analysis of Functionally Graded Plates Subjected to Thermal and Mechanical Loadings,” Composite Structures, Vol. 87, pp. 344357 (2009). doi: 10.1016/j.compstruct.2008.02.002
  23. [23] Xiang, S. and Kang, G. W., “A Nth-Order Shear Deformation Theory for the Bending Analysis on the Functionally Graded Plates,” European Journal of Mechanics A/Solids, Vol. 37, pp. 336343 (2013). doi: 10.1016/j.euromechsol.2012.08.005
  24. [24] Neves, A. M. A., Ferreira, A. J. M., Carrera, E, Cinefra, M., Roque, C. M. C., Jorge, R. M. N. and Soares, C. M. M., “Free Vibration Analysis of Functionally Graded Shells by a Higher-Order Shear Deformation Theory and Radial Basis Functions Collocation, Accounting for Through-the-Thickness Deformations,” European Journal of Mechanics A/Solids, Vol. 37, pp. 2434 (2013). doi: 10.1016/j.euromechsol. 2012.05.005
  25. [25] Sahmani, S. and Ansari, R., “On the Free Vibration Response of Functionally Graded Higher-Order Shear Deformable Microplates Based on the Strain Gradient Elasticity Theory,” Composite Structures, Vol. 95, pp. 430442 (2013). doi: 10.1016/j.compstruct.2012.07.025
  26. [26] Saidi, A. R., Atashipour, S. R. and Jomehzadeh, E., “Reformulation of Navier Equations for Solving ThreeDimensional Elasticity Problems with Applications to Thick Plate Analysis,” Acta Mech., Vol. 208, pp. 227 235 (2009). doi: 10.1007/s00707-009-0147-6
  27. [27] Hasani Baferani, A., Saidi, A. R. and Jomehzadeh, E., “An Exact Solution for Free Vibration of Thin Functionally Graded Rectangular Plates,” Proc. of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, March 1, Vol. 225, No. 3, pp. 526536 (2011). doi: 10.1243/09544062 JMES2171
  28. [28] Maziar, J. and Iman, R., “Free Vibration Analysis of Functionally Graded Plates with Multiple Circular and Noncircular Cutouts,” Chinese Journal of Mechanical Engineering, Vol. 24, a, No. 6, a, pp. 19 (2011). doi: 10.3901/CJME.2012.02.277
  29. [29] Batra, R. C. and Jin, J., “Natural Frequencies of a Functionally Graded Anisotropic Rectangular Plate,” Journal of Sound and Vibration, Vol. 282, No. 12, pp. 509516 (2005). doi: 10.1016/j.jsv.2004.03.068
  30. [30] Ferreira, A. J. M., Batra, R. C., Roque, C. M. C., Qian, L. F. and Jorge, R. M. N., “Natural Frequencies of Functionally Graded Plates by a Meshless Method,” Composite Structures, Vol. 75, No. 14, pp. 593600 (2006). doi: 10.1016/j.compstruct.2006.04.018
  31. [31] Vel, S. S. and Batra, R. C., “Three-Dimensional Exact Solution for the Vibration of Functionally Graded Rectangular Plates,” Journal of Sound and Vibration, Vol. 272, pp. 703730 (2004). doi: 10.1016/S0022- 460X(03)00412-7
  32. [32] Reddy, J. N. and Phan, N. D., “Stability and Vibration of Isotropic and Laminated Plates According to Higher Order Shear Deformation Theory,” Journal of Sound and Vibration, Vol. 98, pp. 157170 (1985). doi: 10.1016/0022-460X(85)90383-9
  33. [33] Roque, C. M. C., Ferreira, A. J. M. and Jorge, R. M. N., “ARadial Basis Function Approach for the Free Vibration Analysis of Functionally Graded Plates Using a Refined Theory,” Journal of Sound and Vibration, Vol. 300, No. 35, pp. 10481070 (2007). doi: 10.1016/ j.jsv.2006.08.037
  34. [34] Cheng, Z. Q. and Batra, R. C., “Exact Correspondence between Eigenvalues of Membranes and Functionally Graded Simply Supported Polygonal Plates,” Journal of Sound and Vibration, Vol. 229, pp. 879895 (2000). doi: 10.1006/jsvi.1999.2525
  35. [35] Mallikarjuna, K. T., “Free Vibration of Symmetrically Laminated Plates Using a Higher Order Theory with Finite Element Technique,” International Journal of Numerical Methods in Engineering, Vol. 28, pp. 18751889 (1989). doi: 10.1002/nme.1620280812
  36. [36] Zhao, X., Lee, Y. Y. and Liew, K. M., “Free Vibration Analysis of Functionally Graded Plates Using the Element-Free kp-Ritz Method,” Journal of Sound and Vibration, Vol. 319, No. 3, pp. 918939 (2009). doi: 10.1016/j.jsv.2008.06.025
  37. [37] Hosseini-Hashemi, Sh., Rokni Damavandi Taher, H., Akhavan, H. and Omidi, M., “Free Vibration of Functionally Graded Rectangular Plates Using First-Order Shear Deformation Plate Theory,” Journal of Applied Mathematical Modelling, Vol. 34, No. 5, pp. 1276 1291 (2010). doi: 10.1016/j.apm.2009.08.008
  38. [38] Pradyumna, S. and Bandyopadhyay, J. N., “Free Vibration Analysis of Functionally Graded Curved Panels Using a Higher-Order Finite Element Formulation,” Journal of Sound and Vibration, Vol. 318, No. 12, pp. 176192 (2008). doi: 10.1016/j.jsv.2008.03.056
  39. [39] Fares, M. E., Elmarghany, M. Kh. and Atta, D., “An Efficient and Simple Refined Theory for Bending and Vibration of Functionally Graded Plates,” Composite Structures, Vol. 91, No. 3, pp. 296305 (2009). doi: 10.1016/j.compstruct.2009.05.008
  40. [40] Talha, M. and Singh, B. N., “Static Response and Free Vibration Analysis of FGM Plates Using Higher Order Shear Deformation Theory,” Applied Mathematical Modelling, Vol. 34, No. 12, pp. 39914011 (2010). doi: 10.1016/j.apm.2010.03.034
  41. [41] Hassen, A., Abdelouahed, T., Ismail, M. and Adda Bedia, El., “Free Vibration Analysis of Functionally Graded Plates Resting on Winkler-Pasternak Elastic Foundations Using a New Shear Deformation Theory,” International Journal of Mechanics and Materials in Design, Vol. 6, No. 2, pp. 113121 (2010).
  42. [42] Hosseini-Hashemi, Sh., Fadaee, M. and Atashipour, S. R., “Study on the Free Vibration of Thick Functionally Graded Rectangular Plates According to a New Exact Closed-Form Procedure,” Composite Structures, Vol. 93, No. 2, pp. 722735 (2011). doi: 10.1016/j. compstruct.2010.08.007
  43. [43] Pucha, N. S. and Reddy, J. N., “Stability and Natural Vibration Analysis of Laminated Plates by Using a Mixed Element Based on a Refined Plate Theory,” Journal of Sound and Vibration, Vol. 104, pp. 285 300 (1986). doi: 10.1016/0022-460X(86)90269-5
  44. [44] Marur, S. R. and Kant, T., “Free Vibration Analysis of Firbre Reinforced Composite Beams Using Higher Order Theories and Finite Element Modeling,” Journal of Sound and Vibration, Vol. 194, pp. 337351 (1996). doi: 10.1006/jsvi.1996.0362
  45. [45] Liu, G. R., Zhao, X., Dai, K. Y., Zhong, Z. H., Li, G. Y. and Han, X., “Static and Free Vibration Analysis of Laminated Composite Plates Using the Conforming Radial Point Interpolation Method,” Composites Science and Technology, Vol. 68, pp. 354366 (2008). doi: 10.1016/j.compscitech.2007.07.014
  46. [46] Mirtalaie1, S. H., Hajabasi, M. A. and Hejripour, F., “Free Vibration Analysis of Functionally Graded Moderately Thick Annular Sector Plates Using Differential Quadrature Method,” Applied Mechanics and Materials, Vol. 110116, pp. 29902998 (2012). doi: 10.4028/www.scientific.net/AMM.110-116.2990
  47. [47] Sina, S. A., Navazi, H. M. and Haddadpour, H., “An Analytical Method for Free Vibration Analysis of Functionally Graded Beams,” Materials and Design, Vol. 30, pp. 741747 (2009). doi: 10.1016/j.matdes. 2008.05.015
  48. [48] Fallah, A., Aghdam, M. M. and Kargarnovin, M. H., “Free Vibration Analysis of Moderately Thick Functionally Graded Plates on Elastic Foundation Using the Extended Kantorovich Method,” Applied Mechanics, Vol. 83, No. 2, pp. 177191 (2013). doi: 10.1007/ s00419-012-0645-1
  49. [49] Neves, A. M. A., Ferreira, A. J. M., Carrera, E., Cinefra, M., Roque, C. M. C., Jorge, R. M. N. and Soares, C. M. M., “Static, Free Vibration and Buckling Analysis of Isotropic and Sandwich Functionally Graded Plates Using a Quasi-3D Higher-Order Shear Deformation Theory and Meshless Technique,” Composites: Part B, Vol. 44, pp. 657674 (2013). doi: 10.1016/j.compositesb.2012.01.089
  50. [50] Neves, A. M. A., Ferreira, A. J. M., Carrera, E., Cinefra, M., Roque, C. M. C. and Jorge, R. M. N, “A Quasi-3D Sinusoidal Shear Deformation Theory for the Static and Free Vibration Analysis of Functionally Graded Plates,” Composites Part B: Engineering, Vol. 43, pp. 711725 (2012). doi: 10.1016/j.compositesb. 2011.08.009
  51. [51] Qiana, L. F., Batrab, R. C. and Chena, L. M., “Static and Dynamic Deformations of Thick Functionally Graded Elastic Plates by Using Higher-Order Shear and Normal Deformable Plate Theory and Meshless Local Petrov-Galerkin Method,” Composites: Part B, Vol. 35, pp. 685697 (2004). doi: 10.1016/j. compositesb.2004.02.004
  52. [52] Kant, T. and Manjunatha, B. S., “An Unsymmetric FRC Laminate C0 Finite Element Model with 12 Degrees of Freedom Per Node,” Engineering with Computers, Vol. 5, No. 3, pp. 300308 (1988). doi: 10. 1108/eb023749


Latest Articles

    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.