REFERENCES
- [1] Harne, R. L. and Wang, K. W., “A Review of the Recent Research on Vibration Energy Harvesting via Bistable Systems,” Smart Mater. Struct, Vol. 22, 023001 (2013). doi: 10.1088/0964-1726/22/2/023001
- [2] Triplett, A. and Quinn, D. D., “The Effect of Non-linear Piezoelectric Coupling on Vibration-based Energy Harvesting,” J. Intell. Mater. Syst. Struct, Vol. 20, pp. 19591967 (2009). doi: 10.1177/1045389X09343218
- [3] Vocca, H., Neri, I., et al., “Kinetic Energy Harvesting with Bistable Oscillators,” Appl. Energy, Vol. 97, pp. 771–776 (2012). doi: 10.1016/j.apenergy.2011.12.087
- [4] Tang, L., Yang, Y. and Soh, C. K., “Improving Functionality of Vibration Energy Harvesters Using Magnets,” J. Intell. Mater. Syst. Struct, Vol. 23, pp. 1433– 1449 (2012). doi: 10.1177/1045389X12443016
- [5] Scruggs, J. T., “An Optimal Stochastic Control Theory for Distributed Energy Harvesting Networks,” J. Sound. Vib, Vol. 320, pp. 707725 (2009). doi: 10.1016/j.jsv. 2008.09.001
- [6] Erturk, A., Hoffmann, J. and Inman, D. J. “A Piezomagnetoelastic Structure for Broadband Vibration Energy Harvesting,” Appl. Phys. Lett., Vol. 94, 254102 (2009). doi: 10.1063/1.3159815
- [7] Ferrari, M., Ferrari, V., et al., “Improved Energy Harvesting from Wideband Vibrations by Nonlinear Piezoelectric Converters,” Sens. Actuators A, Vol. 162, pp. 425431 (2010). doi: 10.1016/j.sna.2010.05.022
- [8] Ramlan, R., Brennan, M. J., et al., “Potential Benefits of a Non-linear Stiffness in an Energy Harvesting Device,” Nonlinear Dyn., Vol. 59, pp. 545558 (2010). doi: 10.1007/s11071-009-9561-5
- [9] Daqaq, M. F., “On Intentional Introduction of Stiffness Nonlinearities for Energy Harvesting under White Gaussian Excitations,” Nonlinear Dyn., Vol. 69, pp. 10631079 (2012). doi: 10.1007/s11071-012-0327-0
- [10] Pellegrini, S. P., Tolou, N., et al., “Bistable Vibration Energy Harvesters: a Review,” J. Intell. Mater. Syst. Struct, Vol. 24, pp. 1303–1312 (2013). doi: 10.1177/ 1045389X12444940
- [11] Daqaq, M. F., Stabler, C., et al., “Investigation of Power Harvesting via Parametric Excitations,” J. Intell. Mater. Syst. Struct, Vol. 20, pp. 545557 (2008). doi: 10.1177/1045389X08100978
- [12] Daqaq, M. F., “Transduction of a Bistable Inductive Generator Driven by White and Exponentially Correlated Gaussian Noise,” J. Sound. Vib., Vol. 330, pp. 25542564 (2011). doi: 10.1016/j.jsv.2010.12.005
- [13] Cotton, F., Vocca, H., et al., “Nonlinear Energy Harvesting,” Phys. Rev. Lett., Vol. 102, 080601 (2009). doi: 10.1103/PhysRevLett.102.080601
- [14] Litak, G., Friswell, M. I. and Adhikari, S., “Magnetopiezoelastic Energy Harvesting Driven by Random Excitations,” Appl. Phys. Lett., Vol. 96, 214103 (2010). doi: 10.1063/1.3436553
- [15] Ali, S. F., Adhikari, S., et al., “The Analysis of Piezomagnetoelastic Energy Harvesters under Broadband Random Excitations,” J. Appl. Phys., Vol. 109, 74904 (2011). doi: 10.1063/1.3560523
- [16] De Paula, A. S., Inman, D. J. and Savi, M. A., “Energy Harvesting in a Nonlinear Piezomagnetoelastic Beam Subjected to Random Excitation,” Mech. Syst. Signal Process, Vol. 5455, pp. 405416 (2015). doi: 10. 1016/j.ymssp.2014.08.020
- [17] Lin, J. T., Lee, B. and Alphenaar, B., “The Magnetic Coupling of a Piezoelectric Cantilever for Enhanced Energy Harvesting Efficiency,” Smart Mater. Struct, Vol. 19, 045012 (2010). doi: 10.1088/0964-1726/19/ 4/045012
- [18] Zhao, S. and Erturk, A., “On the Stochastic Excitation of Monostable and Bistable Electroelastic Power Generators: Relative Advantages and Trade offs in a Physical System,” Appl. Phys. Lett., Vol. 102, 103902 (2013). doi: 10.1063/1.4795296
- [19] Gao, Y. J., Leng, Y. G., et al., “Performance of Bistable Piezoelectric Cantilever Vibration Energy Harvesters with an Elastic Support External Magnet,” Smart Mater. Struct, Vol. 23, 095003 (2014). doi: 10.1088/ 0964-1726/23/9/095003
- [20] Leng, Y. G., Gao, Y. J., et al., “An Elastic-support Model for Enhanced Bistable Piezoelectric Energy Harvesting from Random Vibrations,” J. Appl. Phys, Vol. 117, 64901 (2015). doi: 10.1063/1.4907763