REFERENCES
- [1] O. Civalek, Nonlinear analysis of thin rectangular plates on Winkler – Pasternak elastic foundations by DSC – HDQ methods, Appl. Math. Model. 31 (2007) 606–624. doi:10.1016/j.apm.2005.11.023.
- [2] M. Gibigaye, C.P. Yabi, G. Degan, Free vibration analysis of dowelled rectangular isotropic thin plate on a Modified Vlasov soil type by using discrete singular convolution method, Appl. Math. Model. 61 (2018) 618–633. doi:10.1016/j.apm.2018.05.019.
- [3] K. Ozgan, A.T. Daloglu, Dynamic analysis of thick plates on elastic foundations using Winkler foundation model, Sci. Iran. A. 19 (2013) 29–41. doi:10.3233/SAV-2012-0723.
- [4] M. Gibigaye, C.P. Yabi, I.E. Alloba, Dynamic Response of a Rigid Pavement Plate Based on an Inertial Soil, Int. Sch. Res. Not. 2016 (2016) 1–9. doi:10.1155/2016/4975345.
- [5] S.W. Alisjahbana, W. Wangsadinata, Dynamic analysis of rigid roadway pavement under moving traffic loads with variable velocity, Interact. Multiscale Mech. 5 (2012) 105–114. doi:10.12989/imm.2012.5.2.105.
- [6] X. Wang, Z. Yuan, Discrete singular convolution and Taylor series expansion method for free vibration analysis of beams and rectangular plates with free boundaries, Int. J. Mech. Sci. 122 (2017) 184–191. doi:10.1016/j.ijmecsci.2017.01.023.
- [7] Ö.C.K.M.B.A. Ciğdem Demir, Frequencies Values of Orthotropic Composite Circular and Annular Plates, 9 (2017) 55–65. doi:10.24107/ijeas.309060.
- [8] O. Civalek, Fundamental frequency of isotropic and orthotropic rectangular plates with linearly varying thickness by discrete singular convolution method, Appl. Math. Model. 33 (2009) 3825–3835. doi:10.1016/j.apm.2008.12.019.
- [9] S.W. Alisjahbana, I. Alisjahabana, S. Kiryu, B.S. Gan, Semi analytical solution of a rigid pavement under a moving load on a Kerr foundation model Semi analytical solution of a rigid pavement under a moving load on a Kerr foundation model, (2018). doi:10.21595/jve.2018.20082.
- [10] H. Khov, W.L. Li, R.F. Gibson, An accurate solution method for the static and dynamic deflections of orthotropic plates with general boundary conditions, Compos. Struct. 90 (2009) 474–481. doi:10.1016/j.compstruct.2009.04.020.
- [11] Q. Zhu, X. Wang, Free vibration analysis of thin isotropic and anisotropic rectangular plates by the discrete singular convolution algorithm, Int. J. Numer. Methods Eng. 86 (2011) 782–800. doi:10.1002/nme.
- [12] Y.B. Zhao, G.W. Wei, DSC Analysis of Rectangular Plates With Non-Uniform Boundary Conditions, J. Sound Vib. 255 (2002) 203–228. doi:10.1006/jsvi.2001.4150.
- [13] X. Wang, S. Xu, Free vibration analysis of beams and rectangular plates with free edges by the discrete singular convolution, J. Sound Vib. 329 (2010) 1780–1792. doi:10.1016/j.jsv.2009.12.006.
- [14] C. Shu, Q. Yao, K.S. Yeo, Block-marching in time with DQ discretization: An efficient method for time-dependent problems, Comput. Methods Appl. Mech. Eng. 191 (2002) 4587–4597. doi:10.1016/S0045-7825(02)00387-0.
- [15] O. Civalek, A. Yavas, Large Deflection Static Analysis of Rectangular Plates On Two Parameter Elastic Foundations, Int. J. Sci. Technol. 1 (2006) 43–50. doi:10.1.1.530.5332.
- [16] S. Zhao, G.W. Wei, Y. Xiang, DSC analysis of free-edged beams by an iteratively matched boundary method, J. Sound Vib. 284 (2005) 487–493. doi:10.1016/j.jsv.2004.08.037.
- [17] S.A. Eftekhari, A.A. Jafari, Vibration of an initially stressed rectangular plate due to an accelerated traveling mass, Sci. Iran. 19 (2012) 1195–1213. doi:10.1016/j.scient.2012.07.008.
- [18] S.A. Eftekhari, A modified differential quadrature procedure for numerical solution of moving load problem, 0 (2015) 1–17. doi:10.1177/0954406215584630.
- [19] S.A. Eftekhari, A note on mathematical treatment of the Dirac-delta function in the differential quadrature bending and forced vibration analysis of beams and rectangular plates, Appl. Math. Model. (2015). doi:10.1016/j.apm.2015.01.063.
- [20] S.A. Eftekhari, A.A. Jafari, Numerical simulation of chaotic dynamical systems by the method of differential quadrature, Sci. Iran. 19 (2012) 1299–1315. doi:10.1016/j.scient.2012.08.003.
- [21] S.A. Eftekhari, Young, A Differential Quadrature Procedure with Regularization of the Dirac-delta Function for Numerical Solution of Moving Load Problem, Lat. Am. J. Solids Struct. (2014) 1241–1265.
- [22] S.Y. Yang, Y.C. Zhou, G.W. Wei, Comparison of the discrete singular convolution algorithm and the Fourier pseudospectral method for solving partial differential equations, Comput. Phys. Commun. 143 (2002) 113–135. doi:10.1016/S0010-4655(01)00427-1.
- [23] Y.M. Xie, An assessment of time integration schemes for non-linear dynamic equations, J. Sound Vib. 192 (1996) 321–331. doi:10.1006/jsvi.1996.0190.
- [24] C. Runge, Ueber die numerische Auflösung von Differentialgleichungen, Math. Ann. 46 (1895) 167–178. doi:10.1007/BF01446807.
- [25] V. Nguyen, Comportement dynamique de structures non-linéaires soumises à des charges mobiles, Ecole Nationale des Ponts et Chaussées, 2002.
- [26] N.M. Newmark, A Method of Computation for Structural Dynamics, J. Eng. Mech. 85 (1959) 67–94. doi:0.1016/j.compgeo.2015.08.008.
- [27] A. Ben-Israel, A Newton-Raphson method for the solution of systems of equations, J. Math. Anal. Appl. 15 (1966) 243–252. doi:10.1016/0022-247X(66)90115-6.
- [28] W.T. Straughan, Analysis of plates on elastic foundations, Texas Technologie University, 1990.
- [29] X. Wang, Y. Wang, S. Xu, DSC analysis of a simply supported anisotropic rectangular plate, Compos. Struct. 94 (2012) 2576–2584. doi:10.1016/j.compstruct.2012.03.005.
- [30] G.W. Wei, Discrete singular convolution for the solution of the Fokker–Planck equation, J. Chem. Phys. 110 (1999) 8930–8942. doi:10.1063/1.478812.
- [31] G.W. Wei, Y.B. Zhao, Y. Xiang, Discrete singular convolution and its application to the analysis of plates with internal supports.Part 1: Theory and algorithm, Int. J. Numer. Methods Eng. 55 (2002) 913–946. doi:10.1002/nme.527.
- [32] G. Duan, X. Wang, Vibration analysis of stepped rectangular plates by the discrete singular convolution algorithm, Int. J. Mech. Sci. 82 (2014) 100–109. doi:10.1016/j.ijmecsci.2014.03.004.
- [33] C.W. Bert, X. Wang, A.G. Striz, Differential quadrature for static and free vibration analyses of anisotropic plates, Int. J. Solids Struct. 30 (1993) 1737–1744. doi:10.1016/0020-7683(93)90230-5.
- [34] M. Géradin, D.J. Rixen, Mechanical Vibrations: Theory and Application to Structural Dynamics, 2015.
- [35] K.L. Nguyen, Q.T. Tran, L. Manin, S. Baguet, M. Andrianoely, Un schéma d’intégration temporelle pour la réponse transitoire de systèmes mécaniques avec butées de contact, (2017).
- [36] SETRA, LCPC, Conception et dimensionnement des structures de chaussée: guide technique, 1994.
- [37] A. Turhan, A Consistent Vlasov Model for Analysis of Plates on Elastic Foundations Using the Finite Element Method, Graduate Faculty of Texas Tech University, 1992. https://ttu-ir.tdl.org/ttu-ir/bitstream/.../31295007142515.pdf?...1.
- [38] NCHRP, Guide for Mechanistic-Empirical Design OF NEW AND REHABILITATED PAVEMENT STRUCTURES, ARA, Inc., ERES Division 505 West University Avenue Champaign, Illinois 61820, 2003.
- [39] C. Kneifati, Analysis of Plates on a Kerr Foundation, I (1985) 1325–1342.
- [40] Liu D, Chen Y. Eigenvalue analysis of thin plate with complicated shapes by a novel infinite element method. Computer Modeling in Engineering & Sciences. 2019 Jan 1;120(2):273-92.
- [41] Qiu Z, Lu J, Elgamal A, Su L, Wang N, Almutairi A. OpenSees three-dimensional computational modeling of ground-structure systems and liquefaction scenarios. Computer Modeling in Engineering & Sciences. 2019 Jan 1;120(3):629-56.
- [42] Ma Z, Kong L, Jin X. An Explicit-Implicit Mixed Staggered Asynchronous Step Integration Algorithm in Structural Dynamics. Computer Modeling in Engineering & Sciences. 2018 Jul 1;116(1):51-67.
- [43] Lu, H., Gao, Z., Xu, L., & Wu, B. (2018). Effects of the Convex Topography on Railway Environmental Vibrations. Computer Modeling in Engineering & Sciences, 118(1), 177-205.
- [44] Chang DW, Lee MR, Hong MY, Wang YC. A simplified modeling for seismic responses of rectangular foundation on piles subjected to horizontal earthquakes. Journal of GeoEngineering. 2016 Dec 1;11(3):109-22.
- [45] Chang DW, Lien HW, Wang T. Finite difference analysis of vertically loaded raft foundation based on the plate theory with boundary concern. Journal of GeoEngineering. 2018 Sep 1;13(3):135-47.