Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

G.Gulyamov2, U.I.Erkaboev1, N.A.Sayidov1, R.G.Rakhimov This email address is being protected from spambots. You need JavaScript enabled to view it.1

1Namangan Institute of Engineering and Technology,160115 Namangan, Uzbekistan
2Namangan Engineering - Construction Institute, 160103 Namangan, Uzbekistan


 

Received: February 23, 2020
Accepted: April 16, 2020
Publication Date: September 1, 2020

Download Citation: ||https://doi.org/10.6180/jase.202009_23(3).0009  

ABSTRACT


A theory is constructed of the temperature dependence of quantum oscillation phenomena in narrow-gap electronic semiconductors, taking into account the thermal smearing of Landau levels. Oscillations of longitudinal electrical conductivity in narrow-gap electronic semiconductors at various temperatures are studied. An integral expression is obtained for the longitudinal conductivity in narrow-gap electronic semiconductors, taking into account the diffuse broadening of the Landau levels. A formula is obtained for the dependence of the oscillations of longitudinal electrical conductivity on the band gap of narrow-gap semiconductors. The calculation results are compared with experimental data.


Keywords: Oscillations of electronic heat capacity, oscillations of magnetic susceptibility and oscillations of electrical conductivity, cyclotron effective mass.


REFERENCES


 

  1. [1] G.Gulyamov, U.I.Erkaboev, A.G.Gulyamov. Indian journal of physics. 93(5), 639 (2019).
  2. [2] G.Gulyamov, U.I.Erkaboev, A.G.Gulyamov. Advances in condensed matter physics. Article ID 3084631 (2019).
  3. [3] G.P. Chuiko, D.M. Stepanchikov, Physics and chemistry of solid state. 9, 312 (2008).
  4. [4] G.Gulyamov, U.I.Erkaboev, A.G.Gulyamov. Journal of nano – and electronic physics. 11(1), 01020 (2019).
  5. [5] M.Ben Shalom, A.Ron, A. Palevski, Y. Dagan, Physical Review letters. 105, 206401 (2010).
  6. [6] T.Helm, M.V.Kartsovnik, M.Bartkowiak, N.Bittner, M. Lambacher, A. Erb, J. Wosnitza, R. Gross, Physical Review letters 103, 157002, (2009).
  7. [7] Ning Tang, Bo Shen, Kui Han, Fang-Chao Lu, Zhi-Xin Qin, Guo-Yi Zhang, Physical Review B 79, 073304 (2009).
  8. [8] M.Petrushevsky, E.Lahoud, A.Ron, E.Maniv, I.Diamant, I.Neder, S.Wiedmann, Y.Dagan, Physical Review B 86, 045131 (2012).
  9. [9] G.Gulyamov, U.I.Erkaboev, A.G.Gulyamov. Advances in condensed matter physics, ID 6747853, (2017).
  10. [10] G.Gulyamov, U.I.Erkaboev, P.J.Baymatov, Advances in condensed matter physics, ID 5434717, (2016).
  11. [11] I.A.Dmitriev, A.D.Mirlin, D.G.Polyakov, M.A.Zudov, Rev. Mod. Phys. 84, 1709 (2012).
  12. [12] I.A.Dmitriev, A.D.Mirlin, D.G.Polyakov, Phys. Rev. B. 75, 245320 (2007).
  13. [13] G.Gulyamov, A.G.Gulyamov, U.I.Erkaboev. Applied solar energy. 54(5), 338 (2018)
  14. [14] N.B.Brandt, V.A.Kulbachinskiy, Quasiparticles in condensed matter physics. “Fizmatlit”, 297 (2007).
  15. [15] R.Passler, Phys. stat. sol.(b) 216, 975 (1999).
  16. [16] I.A.Vaynshteyn, A.F.Zatsepin, V.S.Kortov, Physics of the Solid State, 41, 905 (1999).
  17. [17] M.K.Zhitinskaya, S.A.Nemov, T.E.Svechnikova, Semiconductors. 44, 1140 (2007)
  18. [18] G.N.Isachenko, V.K.Zaĭtsev, M.I.Fedorov, A.T.Burkov, E.A.Gurieva, P.P.Konstantinov, M.V.Vedernikov, Physics of the Solid State. 51, 1796 (2009).
  19. [19] I.V. Kukushkin, S.V. Meshkov, V.B. Timofeev, Physics-Uspekhi, 31, 511 (1988).
  20. [20] Michael J.Harrison, Physical review B. 48, 5668 (1993).
  21. [21] V.A.Kulbachinskii, A.Yu.Kaminskii, K.Kindo, Y.Narumi, K.Suga, P.Lostak, P.Svanda, Physica B. 311, 292 (2002).
  22. [22] T.Kim, M.Jung, K.H.Yoo, Journal of Physics and Chemistry of Solids. 61, 1769 (2000).
  23. [23] Tsuneya Ando, Alan B. Fowler, Frank Stern, Rev. Mod. Phys. 54, 437 (1982).
  24. [24] A.N.Veis, L.N.Luk’yanova, V.A.Kutasov, Physics of the Solid State, 54, 2182 (2012).


Latest Articles