Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Sahaya Ponrekha A1,2, M.S.P. Subathra1, and C. Bharatiraja This email address is being protected from spambots. You need JavaScript enabled to view it.2

1Department of Electrical and Electronics Engineering, Karunya Institute of Technology and Sciences, Coimbatore, Tamilnadu, India, 641114
2Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India, 603203


 

Received: August 6, 2021
Accepted: October 20, 2021
Publication Date: December 17, 2021

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202210_25(5).0005  


ABSTRACT


This paper proposes a pseudo-DC link type DC-decoupled transformerless inverter. The variation of common-mode voltage is the primary reason for the flow of common-mode leakage current in the transformerless inverter. The proposed topology uses the DC-decoupling method to mitigate the common-mode leakage current. In contrast to two-stage inverters, the proposed topology’s pseudo-DC link structure avoids the necessity for a DC-link capacitor and associated charging diode between the boosting and inverter stages. The proposed inverter’s excellent boosting ability allows it to work with a wide input voltage range. The modulation strategy used here avoids the need for dead time and the problem of shoot-through. The MATLAB simulation model directly confirms the feasibility and efficacy of the proposed topology and its modulation strategy. The loss calculation and thermal analysis of the inverter made of three different materials are compared in PLECS platform. The thermal analysis helps to decide the heat sink size and thermal protection of switches.


Keywords: Transformerless inverter, leakage current, loss analysis, thermal analysis


REFERENCES


  1. [1] T. Hou, Y. Chen, Y. Chen, C. Bao, et al., (2021) “Research on Control of A New Quasi-Z Source Photovoltaic Grid-Connected Inverter Based on Power Feedforward and Optimized PCI of Bacterial Foraging" Journal of Applied Science and Engineering 24(4): 595–609. DOI:10.6180/jase.202108_24(4).0015.
  2. [2] M. Shayestegan, (2018) “Overview of grid-connected two-stage transformer-less inverter design" Journal of Modern Power Systems and Clean Energy 6(4): 642–655. DOI: 10.1007/s40565-017-0367-z.
  3. [3] W. Li, Y. Gu, H. Luo,W. Cui, X. He, and C. Xia, (2015) “Topology review and derivation methodology of single phase transformerless photovoltaic inverters for leakage current suppression" IEEE Transactions on Industrial Electronics 62(7): 4537–4551. DOI: 10.1109/TIE.2015.2399278.
  4. [4] B. Chen, B. Gu, J.-S. Lai, W. Yu, C.-Y. Lin, and C. Zheng. “Current distortion correction in dual buck photovoltaic inverter with a novel PWM modulation and control method”. In: 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE. 2013, 727–731. DOI: 10.1109/APEC.2013.6520290.
  5. [5] A. A. Khan, Y. W. Lu, W. Eberle, L. Wang, U. A. Khan, M. Agamy, and H. Cha, (2019) “Single-stage bidirectional buck–boost inverters using a single inductor and eliminating the common-mode leakage current" IEEE Transactions on Power Electronics 35(2): 1269–1281. DOI: 10.1109/TPEL.2019.2918349.
  6. [6] A. A. Khan, Y.W. Lu, U. A. Khan, L.Wang,W. Eberle, and M. Agamy, (2020) “Novel Transformerless Buck– Boost InvertersWithout Leakage Current" IEEE Transactions on Industrial Electronics 67(12): 10442–10454. DOI: 10.1109/TIE.2019.2962478.
  7. [7] W. Wu, J. Ji, and F. Blaabjerg, (2014) “Aalborg invertera new type of “buck in buck, boost in boost” grid-tied inverter" IEEE Transactions on power electronics 30(9): 4784–4793. DOI: 10.1109/TPEL.2014.2363566.
  8. [8] R. Barzegarkhoo, Y. P. Siwakoti, and F. Blaabjerg, (2020) “A new switched-capacitor five-level inverter suitable for transformerless grid-connected applications" IEEE Transactions on Power Electronics 35(8): 8140–8153. DOI: 10.1109/TPEL.2020.2967336.
  9. [9] A. Kadam and A. Shukla, (2017) “A multilevel transformerless inverter employing ground connection between PV negative terminal and grid neutral point" IEEE Transactions on Industrial Electronics 64(11): 8897–8907.DOI: 10.1109/TIE.2017.2696460.
  10. [10] F. G. Matthias Victor, S. Bremicker, and U. Hubler. “US patent 0286281A1”. US patent.
  11. [11] L. Zhou, F. Gao, and T. Xu, (2016) “A family of neutralpoint-clamped circuits of single-phase PV inverters: Generalized principle and implementation" IEEE Transactions on Power Electronics 32(6): 4307–4319. DOI:10.1109/TPEL.2016.2587660.
  12. [12] H. F. Xiao, X. P. Liu, and K. Lan, (2014) “Zero-voltagetransition full-bridge topologies for transformerless photovoltaic grid-connected inverter" IEEE Transactions on Industrial Electronics 61(10): 5393–5401. DOI: 10.1109/TIE.2014.2300044.
  13. [13] H. F. Xiao, K. Lan, B. Zhou, L. Zhang, and Z. Wu, (2014) “A family of zero-current-transition transformerless photovoltaic grid-connected inverter" IEEE Transactions on Power Electronics 30(6): 3156–3165. DOI:10.1109/TPEL.2014.2337513.
  14. [14] A. Anurag, N. Deshmukh, A. Maguluri, and S. Anand, (2017) “Integrated DC–DC converter based gridconnected transformerless photovoltaic inverter with extended input voltage range" IEEE Transactions on Power Electronics 33(10): 8322–8330. DOI: 10.1109/TPEL.2017.2779144.
  15. [15] S. Dhara and V. Somasekhar, (2019) “An integrated semi-double stage-based multilevel inverter with voltage boosting scheme for photovoltaic systems" IEEE Journal of Emerging and Selected Topics in Power Electronics 8(3): 2326–2339. DOI: 10.1109/JESTPE.2019.2955729.
  16. [16] C. Bharatiraja, K. Lakshmikhandan, M. Kamalesh, D. Rajasekaran, B. Twala, et al., (2021) “A Non-Isolated High-Gain DC to DC Converter Connected Multi-level Inverter for Photo-Voltaic Energy Sources" Journal of Applied Science and Engineering 24(3): 415–422. DOI: 10.6180/jase.202106_24(3).0017.
  17. [17] A. Sarikhani, M. M. Takantape, and M. Hamzeh, (2020) “A transformerless common-ground three-switch single-phase inverter for photovoltaic systems" IEEE Transactions on Power Electronics 35(9): 8902–8909. DOI: 10.1109/TPEL.2020.2971430.
  18. [18] J. Roy, Y. Xia, and R. Ayyanar, (2018) “High step-up transformerless inverter for AC module applications with active power decoupling" IEEE Transactions on Industrial Electronics 66(5): 3891–3901. DOI: 10.1109/TIE.2018.2860538.
  19. [19] M. A. Salvador, T. B. Lazzarin, and R. F. Coelho, (2017) “High step-up DC–DC converter with active switched-inductor and passive switched-capacitor networks" IEEE Transactions on Industrial Electronics 65(7): 5644–5654. DOI: 10.1109/TIE.2017.2782239.
  20. [20] W. Cui, B. Yang, Y. Zhao, W. Li, and X. He. “A novel single-phase transformerless grid-connected inverter”. In: IECON 2011-37th Annual Conference of the IEEE Industrial Electronics Society. IEEE. 2011, 1126–1130. DOI: 10.1109/IECON.2011.6119466.
  21. [21] Accounting for Switching and Conduction Losses. URL: https : //www.plexim.com/products/plecs/thermal.
  22. [22] M. N. H. Khan, M. Forouzesh, Y. P. Siwakoti, L. Li, T. Kerekes, and F. Blaabjerg, (2019) “Transformerless inverter topologies for single-phase photovoltaic systems: A comparative review" IEEE Journal of Emerging and Selected Topics in Power Electronics 8(1): 805–835. DOI: 10.1109/JESTPE.2019.2908672.
  23. [23] URL: https://www.plexim.com/sites/default/files/tutorials/thermal_domain.
  24. [24] F. Asadi and K. Eguchi. Simulation of Power Electronics Converters Using PLECS®. Academic Press, 2019. DOI:10.1016/C2018-0-02253-7.
  25. [25] R. Mitova, R. Ghosh, U. Mhaskar, D. Klikic, M.-X. Wang, and A. Dentella, (2013) “Investigations of 600-V GaN HEMT and GaN diode for power converter applications" IEEE transactions on power electronics 29(5): 2441–2452. DOI: 10.1109/TPEL.2013.2286639.
  26. [26] H. Heydari-doostabad and M. Monfared, (2018) “An integrated interleaved dual-mode time-sharing inverter for single-phase grid-tied applications" IEEE Transactions on Industrial Electronics 66(1): 286–296. DOI: 10.1109/TIE.2018.2829686.
  27. [27] M. Meraj, S. Rahman, A. Iqbal, and L. Ben-Brahim, (2018) “Common mode voltage reduction in a single-phase quasi Z-source inverter for transformerless grid-connected solar PV applications" IEEE Journal of Emerging and Selected Topics in Power Electronics 7(2): 1352–1363. DOI: 10.1109/JESTPE.2018.2867521.


Sahaya Ponrekha A1,2, M.S.P. Subathra1, and C. Bharatiraja This email address is being protected from spambots. You need JavaScript enabled to view it.2

1Department of Electrical and Electronics Engineering, Karunya Institute of Technology and Sciences, Coimbatore, Tamilnadu, India, 641114
2Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India, 603203


 

Received: August 6, 2021
Accepted: October 20, 2021
Publication Date: December 17, 2021

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202210_25(5).0005  


ABSTRACT


This paper proposes a pseudo-DC link type DC-decoupled transformerless inverter. The variation of common-mode voltage is the primary reason for the flow of common-mode leakage current in the transformerless inverter. The proposed topology uses the DC-decoupling method to mitigate the common-mode leakage current. In contrast to two-stage inverters, the proposed topology’s pseudo-DC link structure avoids the necessity for a DC-link capacitor and associated charging diode between the boosting and inverter stages. The proposed inverter’s excellent boosting ability allows it to work with a wide input voltage range. The modulation strategy used here avoids the need for dead time and the problem of shoot-through. The MATLAB simulation model directly confirms the feasibility and efficacy of the proposed topology and its modulation strategy. The loss calculation and thermal analysis of the inverter made of three different materials are compared in PLECS platform. The thermal analysis helps to decide the heat sink size and thermal protection of switches.


Keywords: Transformerless inverter, leakage current, loss analysis, thermal analysis


REFERENCES


  1. [1] T. Hou, Y. Chen, Y. Chen, C. Bao, et al., (2021) “Research on Control of A New Quasi-Z Source Photovoltaic Grid-Connected Inverter Based on Power Feedforward and Optimized PCI of Bacterial Foraging" Journal of Applied Science and Engineering 24(4): 595–609. DOI:10.6180/jase.202108_24(4).0015.
  2. [2] M. Shayestegan, (2018) “Overview of grid-connected two-stage transformer-less inverter design" Journal of Modern Power Systems and Clean Energy 6(4): 642–655. DOI: 10.1007/s40565-017-0367-z.
  3. [3] W. Li, Y. Gu, H. Luo,W. Cui, X. He, and C. Xia, (2015) “Topology review and derivation methodology of single phase transformerless photovoltaic inverters for leakage current suppression" IEEE Transactions on Industrial Electronics 62(7): 4537–4551. DOI: 10.1109/TIE.2015.2399278.
  4. [4] B. Chen, B. Gu, J.-S. Lai, W. Yu, C.-Y. Lin, and C. Zheng. “Current distortion correction in dual buck photovoltaic inverter with a novel PWM modulation and control method”. In: 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE. 2013, 727–731. DOI: 10.1109/APEC.2013.6520290.
  5. [5] A. A. Khan, Y. W. Lu, W. Eberle, L. Wang, U. A. Khan, M. Agamy, and H. Cha, (2019) “Single-stage bidirectional buck–boost inverters using a single inductor and eliminating the common-mode leakage current" IEEE Transactions on Power Electronics 35(2): 1269–1281. DOI: 10.1109/TPEL.2019.2918349.
  6. [6] A. A. Khan, Y.W. Lu, U. A. Khan, L.Wang,W. Eberle, and M. Agamy, (2020) “Novel Transformerless Buck– Boost InvertersWithout Leakage Current" IEEE Transactions on Industrial Electronics 67(12): 10442–10454. DOI: 10.1109/TIE.2019.2962478.
  7. [7] W. Wu, J. Ji, and F. Blaabjerg, (2014) “Aalborg invertera new type of “buck in buck, boost in boost” grid-tied inverter" IEEE Transactions on power electronics 30(9): 4784–4793. DOI: 10.1109/TPEL.2014.2363566.
  8. [8] R. Barzegarkhoo, Y. P. Siwakoti, and F. Blaabjerg, (2020) “A new switched-capacitor five-level inverter suitable for transformerless grid-connected applications" IEEE Transactions on Power Electronics 35(8): 8140–8153. DOI: 10.1109/TPEL.2020.2967336.
  9. [9] A. Kadam and A. Shukla, (2017) “A multilevel transformerless inverter employing ground connection between PV negative terminal and grid neutral point" IEEE Transactions on Industrial Electronics 64(11): 8897–8907.DOI: 10.1109/TIE.2017.2696460.
  10. [10] F. G. Matthias Victor, S. Bremicker, and U. Hubler. “US patent 0286281A1”. US patent.
  11. [11] L. Zhou, F. Gao, and T. Xu, (2016) “A family of neutralpoint-clamped circuits of single-phase PV inverters: Generalized principle and implementation" IEEE Transactions on Power Electronics 32(6): 4307–4319. DOI:10.1109/TPEL.2016.2587660.
  12. [12] H. F. Xiao, X. P. Liu, and K. Lan, (2014) “Zero-voltagetransition full-bridge topologies for transformerless photovoltaic grid-connected inverter" IEEE Transactions on Industrial Electronics 61(10): 5393–5401. DOI: 10.1109/TIE.2014.2300044.
  13. [13] H. F. Xiao, K. Lan, B. Zhou, L. Zhang, and Z. Wu, (2014) “A family of zero-current-transition transformerless photovoltaic grid-connected inverter" IEEE Transactions on Power Electronics 30(6): 3156–3165. DOI:10.1109/TPEL.2014.2337513.
  14. [14] A. Anurag, N. Deshmukh, A. Maguluri, and S. Anand, (2017) “Integrated DC–DC converter based gridconnected transformerless photovoltaic inverter with extended input voltage range" IEEE Transactions on Power Electronics 33(10): 8322–8330. DOI: 10.1109/TPEL.2017.2779144.
  15. [15] S. Dhara and V. Somasekhar, (2019) “An integrated semi-double stage-based multilevel inverter with voltage boosting scheme for photovoltaic systems" IEEE Journal of Emerging and Selected Topics in Power Electronics 8(3): 2326–2339. DOI: 10.1109/JESTPE.2019.2955729.
  16. [16] C. Bharatiraja, K. Lakshmikhandan, M. Kamalesh, D. Rajasekaran, B. Twala, et al., (2021) “A Non-Isolated High-Gain DC to DC Converter Connected Multi-level Inverter for Photo-Voltaic Energy Sources" Journal of Applied Science and Engineering 24(3): 415–422. DOI: 10.6180/jase.202106_24(3).0017.
  17. [17] A. Sarikhani, M. M. Takantape, and M. Hamzeh, (2020) “A transformerless common-ground three-switch single-phase inverter for photovoltaic systems" IEEE Transactions on Power Electronics 35(9): 8902–8909. DOI: 10.1109/TPEL.2020.2971430.
  18. [18] J. Roy, Y. Xia, and R. Ayyanar, (2018) “High step-up transformerless inverter for AC module applications with active power decoupling" IEEE Transactions on Industrial Electronics 66(5): 3891–3901. DOI: 10.1109/TIE.2018.2860538.
  19. [19] M. A. Salvador, T. B. Lazzarin, and R. F. Coelho, (2017) “High step-up DC–DC converter with active switched-inductor and passive switched-capacitor networks" IEEE Transactions on Industrial Electronics 65(7): 5644–5654. DOI: 10.1109/TIE.2017.2782239.
  20. [20] W. Cui, B. Yang, Y. Zhao, W. Li, and X. He. “A novel single-phase transformerless grid-connected inverter”. In: IECON 2011-37th Annual Conference of the IEEE Industrial Electronics Society. IEEE. 2011, 1126–1130. DOI: 10.1109/IECON.2011.6119466.
  21. [21] Accounting for Switching and Conduction Losses. URL: https : //www.plexim.com/products/plecs/thermal.
  22. [22] M. N. H. Khan, M. Forouzesh, Y. P. Siwakoti, L. Li, T. Kerekes, and F. Blaabjerg, (2019) “Transformerless inverter topologies for single-phase photovoltaic systems: A comparative review" IEEE Journal of Emerging and Selected Topics in Power Electronics 8(1): 805–835. DOI: 10.1109/JESTPE.2019.2908672.
  23. [23] URL: https://www.plexim.com/sites/default/files/tutorials/thermal_domain.
  24. [24] F. Asadi and K. Eguchi. Simulation of Power Electronics Converters Using PLECS®. Academic Press, 2019. DOI:10.1016/C2018-0-02253-7.
  25. [25] R. Mitova, R. Ghosh, U. Mhaskar, D. Klikic, M.-X. Wang, and A. Dentella, (2013) “Investigations of 600-V GaN HEMT and GaN diode for power converter applications" IEEE transactions on power electronics 29(5): 2441–2452. DOI: 10.1109/TPEL.2013.2286639.
  26. [26] H. Heydari-doostabad and M. Monfared, (2018) “An integrated interleaved dual-mode time-sharing inverter for single-phase grid-tied applications" IEEE Transactions on Industrial Electronics 66(1): 286–296. DOI: 10.1109/TIE.2018.2829686.
  27. [27] M. Meraj, S. Rahman, A. Iqbal, and L. Ben-Brahim, (2018) “Common mode voltage reduction in a single-phase quasi Z-source inverter for transformerless grid-connected solar PV applications" IEEE Journal of Emerging and Selected Topics in Power Electronics 7(2): 1352–1363. DOI: 10.1109/JESTPE.2018.2867521.


    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.