Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Nse Udoh This email address is being protected from spambots. You need JavaScript enabled to view it.1 and Moses Ekpenyong2

1Department of Statistics, University of Uyo, Nigeria
2Department of Computer Science, University of Uyo, Nigeria


 

Received: September 2, 2021
Accepted: January 19, 2022
Publication Date: May 13, 2022

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202302_26(2).0008  


ABSTRACT


knowledge-based framework that exploits fuzzy logic to generate precise cost implication decisions from an optimal maintenance and replacement schedule is proposed. Using data from a locally fabricated 8HP-PML Gold engine cassava grinding machine whose failure distribution follows the Weibull distribution function with shape and scale parameters α=1.30 and β =1386, respectively; and cost input parameters namely, the cost of preventive maintenance (Cp), cost of replacement maintenance (Cr), and cost of minimal repair (Cm), an analytical model was constructed to generate the corresponding optimal cost ratios (Cr⁄Cp and Cm⁄Cp ), useful for deriving the required universe of discourse and membership functions for the respective linguistic variables or cost parameters ranges. Extensive simulation using MATLAB 2017a revealed three types of system performance demonstrating the effects of costs interaction on varying costs implication decisions. Results of simulation indicate that the machine functions optimally at all low costs (i.e., when Cp, Cr, and Cm are ‘low’) and maintains delayed replacement frequencies but the machine becomes expensive to maintain when Cp, and Cm increases above acceptable thresholds (i.e., are either ‘high’ or ‘v.high’). The scientific implication is that the proposed system efficiently models interaction between input parameters and can effectively guide operators/designers’ decisions on the choice to weigh varying cost implication decisions of PM and replacement schedules for mechanically repairable systems whose failure rate may be characterized by other failure distribution functions.


Keywords: failure distribution; fuzzy logic; preventive maintenance; predictive maintenance; replacement schedule; Weibull distribution function


REFERENCES


  1. [1] H. Pharm and H. Z.Wang, (1996) “Imperfect maintenance" European Journal of Operational Research 94(3): 425–438.
  2. [2] D. Sherwin, (2000) “A review of overall models for maintenance management" Journal of quality in maintenance engineering 6(3): 138–164. DOI: 10.1108/13552510010341171.
  3. [3] C. M. Tan and N. Raghavan, (2008) “A framework to practical predictive maintenance modeling for multi-state systems" Reliability Engineering & System Safety 93(8): 1138–1150. DOI: 10.1016/j.ress.2007.09.003.
  4. [4] I. H. A. Basri E. I. and H. A. Ab-Samat, (2010) “Preventive maintenance (PM) planning: A review" Journal of Quality in maintenance Engineering 23(2): DOI: 10.1108/JQME-04-2016-0014.
  5. [5] K. S. Moghaddam and J. S. Usher, (2010) “Optimal preventive maintenance and replacement schedules with variable improvement factor" Journal of Quality in Maintenance Engineering 16(3): 271–287. DOI: 10.1108/13552511011072916.
  6. [6] J. P. Lee J. and S. Ahn, (2018) “On determining a nonperiodic preventive maintenance schedule using the failure rate threshold for a repairable system" Smart structures and systems 22(2): 151–159. DOI: 10.12989/sss.2018.22.2.151.
  7. [7] S. S. A. Kilic E., G. W. Weber, and R. Dubey, (2014) “A value-adding approach to reliability under preventive maintenance costs and its applications" Optimization 63(12): 1807–1816. DOI: 10.1080/02331934.2014.917301.
  8. [8] A. K. Jain, M. Dhada, M. Hernandez M. P.and Herrera, and A. K. & Parlikad, (2021) “A comprehensive framework from real-time prognostics to maintenance decisions" IET Collaborative Intelligent Manufacturing 3(2): 175–183.
  9. [9] M. A. K. Malik, (1979) “Reliable preventive maintenance scheduling" AIIE transactions 11(3): 221–228. DOI: 10.1080/05695557908974463.
  10. [10] M. J. Z. Lin D. and R. C. Yam, (2001) “Sequential imperfect preventive maintenance models with two categories of failure modes" Naval Research Logistics (NRL) 48(2): 172–183. DOI: 10.1002/1520-6750(200103)48:2<172:AID-NAV5>3.0.CO;2-5.
  11. [11] S. El-Ferik and M. Ben-Daya, (2006) “Age-based hybrid model for imperfect preventive maintenance" IIE Transactions 38(4): 365–375. DOI: 10.1080/07408170500232545.
  12. [12] A. Khatab, (2015) “Hybrid hazard rate model for imperfect preventive maintenance of systems subject to random deterioration" Journal of Intelligent Manufacturing 26(3): 601–608. DOI: 10.1007/s10845-013-0819-x.
  13. [13] J. Moubray. Reliability-centred Maintenance. First. Linacre House, Jordan Hill, Oxford OX2 8DP, 225 Wildwood Avenue, Woburn MA 01801-2041: Butterworth-Heinemann, Oxford, 1991.
  14. [14] R. Dekker, (1996) “Applications of maintenance optimization models: a review and analysis" Reliability Engineering and System Safety 51: 229–240. DOI: 10.1016/0951-8320(95)00076-3.
  15. [15] P. F. Zantek, T. Hanson, P. Damien, and E. Popova, (2015) “A decision dependent stochastic process model for repairable systems with applications" Operations Research Perspectives 2: 73–80. DOI: 10.1016/j.orp.2015.03.002.
  16. [16] A. Kumar, M. Saini, and K. Devi, (2016) “Analysis of a redundant system with priority and Weibull distribution for failure and repair" Cogent Mathematics & Statistics 3(1): 1135721.
  17. [17] R. N. R. E. S. Mann and N. D. Sinpurwalla. Methods of Statistical Analysis of Reliability and Life Data. Canoga Park, California, Hullerton, California Washington D. C.: . John Wiley and Sons Inc, 1973.
  18. [18] J. Lee, B. Kim, and S. Ahn, (2019) “Maintenance optimization for repairable deteriorating systems under imperfect preventive maintenance" Mathematics 7: 716. DOI: 10.3390/math7080716.
  19. [19] K. S. Moghaddam and J. S. Usher, (2011) “Preventive maintenance and replacement scheduling for repairable and maintainable systems using dynamic programming" Computers and Industrial Engineering 60(4): 654–665. DOI: 10.1016/j.cie.2010.12.021.
  20. [20] A. Blokus and P. Dziula, (2021) “Relations of Imperfect Repairs to Critical Infrastructure Maintenance Costs."Sustainability 13(9): 4917. DOI: 10.3390/su13094917.
  21. [21] Q. Gao and Y. Ge, (2015) “Maintenance interval decision models for a system with failure interaction" Journal of Manufacturing Systems 36: 109–114. DOI: 10.1016/j.jmsy.2015.04.012.
  22. [22] T. J. M. Meango and M. S. Ouali, (2019) “Failure interaction models for multicomponent systems: A comparative study" SN Applied Sciences 1(1): 1–25. DOI: 10.1007/s42452-018-0063-2.
  23. [23] R. M. Martinod, O. Bistorin, L. F. Castañeda, and N. Rezg, (2018) “Maintenance policy optimisation for multi-component systems considering degradation of components and imperfect maintenance actions" Computers & Industrial Engineering 124: 100–112. DOI: 10.1016/j.cie.2018.07.019.
  24. [24] A. Hameed. Risk-based shutdown inspection and maintenance for a processing facility (Doctoral dissertation). Memorial University of Newfoundland: Unpublished, 2016.
  25. [25] R. He, X. S. G. Chen, S. Jiang, and G. Chen, (2020) “Reliability assessment of repairable closed-loop process systems under uncertainties" ISA transactions 104: 222–232. DOI: 10.1016/j.isatra.2020.05.008.
  26. [26] L. P. Van H. and P. Muchiri, (2010) “Maintenance optimization models and criteria" Journal of System Assurance Engineering and Management 1(3): 189–200. DOI: 10.1007/s13198-011-0045-x.
  27. [27] H. H. L. Pourzeynali S. and A. H. Modarayi, (2007) “Active control of high rise building structures using fuzzy logic and genetic algorithms" Engineering Structures 29(3): 346–357. DOI: 10.1016/j.engstruct.2006.04.015.
  28. [28] L. G. and A. Lisnianski, (2000) “Optimization of imperfect preventive maintenance for multi-state systems" Reliability Engineering and System Safety 67: 193–203. DOI: 10.1016/S0951-8320(99)00067-8.
  29. [29] M. Samrout, E. C. F. Yalaoui, and N. Chebbo, (2005) “New methods to minimize the preventive maintenance cost of series–parallel systems using ant colony optimization" Reliability Engineering and System Safety 8(3): 346–354. DOI: 10.1016/j.ress.2004.09.005.
  30. [30] K. W. Tsai Y. and H. Teng, (2001) “Optimizing preventive maintenance for mechanical components using genetic algoritms" Reliability Engineering and System Safety 74: 89–97.
  31. [31] N. C. Maatouk I. and E. Châtelet, (2013) “Preventive maintenance optimization for multi states series parallel systems" Proc of the 7th Global Conference on Power Control and Optimization, Prague, Czech Republic: 220–226.
  32. [32] T. Nakagawa, (1986) “Periodic and sequential preventive maintenance policies" Journal of Applied probability 23: 536–542. DOI: 10.1017/S0021900200029843.
  33. [33] V. M. Jiang X. and A. K. S. Jardine, (2001) “Optimal repair/replacement policy for a general repair model" Journal of Advanced Applied Probability 33: 206–222. DOI: 10.1239/aap/999187904.
  34. [34] M. J. Z. Lin D. and R. C. M. Yam, (2000) “General sequential imperfect preventive maintenance models" International Journal of Reliability, Quality and Safety Engineering 7(3): 253–266. DOI: 10.1142/S0218539300000213.
  35. [35] T. Nakagawa, (1988) “Sequential imperfect preventive maintenance policies" IEEE Transactions on Reliability 37(3): 295–298. DOI: 10.1109/24.3758.
  36. [36] Y. Liu and H. Z. Huang, (2010) “Optimal replacement policy for multi-state system under imperfect maintenance" IEEE Transactions on Reliability 59(3): 483–495. DOI: 10.1109/TR.2010.2051242.
  37. [37] L. Y. Waghmode and A. D. Sahasrabudhe, (2012) “Modelling maintenance and repair costs using stochastic point processes for life cycle costing of repairable systems" International Journal of Computer Integrated Manufacturing 25(4-5): 353–367. DOI: 10.1080/0951192X.2010.551783.
  38. [38] S. Hennequin, G. Arango, and N. Rezg, (2009) “Optimization of imperfect maintenance based on fuzzy logic for a single-stage single-product production system" Journal of Quality in Maintenance Engineering 15(4): 412–429. DOI: 10.1108/13552510910997779.
  39. [39] F. T. Chan and A. Prakash, (2012) “Maintenance policy selection in manufacturing firms using the fuzzy MCDM approach" International Journal of Production Research 50(23): 7044–7056. DOI: 10.1080/00207543.2011.653451.
  40. [40] L. Zadeh, (1978) “Fuzzy sets as a basis for a theory of possibility" Fuzzy Sets and Systems 1: 3–28. DOI: 10.1016/0165-0114(78)90029-5.