REFERENCES
- [1] J. J. Bommer and A. Marytínezpereira, (1999) “The effective duration of earthquake strong motion" Journal of Earthquake Engineering 3(2): 127–172. DOI: 10.1080/13632469909350343.
- [2] E. Reinoso and M. Ordaz, (2001) “Duration of strong ground motion during Mexican earthquakes in terms of magnitude, distance to the rupture area and dominant site period" Earthquake Engineering & Structural Dynamics 30(5): 653–673.
- [3] J. J. Kempton and J. P. Stewart, (2006) “Prediction equations for significant duration of earthquake ground motions considering site and near-source effects" Earthquake Spectra 22(4): 985–1013. DOI: 10.1193/1.2358175.
- [4] J. J. Bommer, P. J. Stafford, and J. E. Alarcón, (2009) “Empirical equations for the prediction of the significant, bracketed, and uniform duration of earthquake ground motion" Bulletin of the Seismological Society of America 99(6): 3217–3233.
- [5] J. Lee and R. A. Green, (2014) “An empirical significant duration relationship for stable continental regions" Bulletin of earthquake engineering 12(1): 217–235.
- [6] J. W. van de Lindt and G. H. Goh, (2004) “Effect of earthquake duration on structural reliability" Engineering Structures 26(11): 1585–1597. DOI: 10.1016/j.engstruct.2004.05.017.
- [7] Y. H. Chai, P. Fajfar, and K. M. Romstad, (1998) “Formulation of duration-dependent inelastic seismic design spectrum" Journal of Structural Engineering 124(8): 913–921.
- [8] J. C. Foschaar, J. W. Baker, and G. G. Deierlein, (2011) “Preliminary Assessment of Ground Motion Duration Effects on Structural Collapse" 15thWorld Conference on Earthquake Engineering (22):
- [9] H. Hou and B. Qu, (2015) “Duration effect of spectrally matched ground motions on seismic demands of elastic perfectly plastic SDOFS" Engineering Structures 90: 48–60. DOI: 10.1016/j.engstruct.2015.02.013.
- [10] F. Pachla, A. Kowalska-Koczwara, T. Tatara, and K. Stypuła, (2019) “The influence of vibration duration on the structure of irregular RC buildings" Bulletin of Earthquake Engineering 17(6): 3119–3138. DOI: 10.1007/s10518-018-00546-4.
- [11] I. Iervolino, G. Manfredi, and E. Cosenza, (2006) “Ground motion duration effects on nonlinear seismic response" Earthquake engineering & structural dynamics 35(1): 21–38.
- [12] J. J. Bommer, G. Magenes, J. Hancock, and P. Penazzo, (2004) “The influence of strong-motion duration on the seismic response of masonry structures" Bulletin of Earthquake Engineering 2(1): 1–26.
- [13] J. Hancock and J. J. Bommer, (2007) “Using spectral matched records to explore the influence of strong-motion duration on inelastic structural response" Soil Dynamics and Earthquake Engineering 27(4): 291–299.
- [14] M. Raghunandan and A. B. Liel, (2013) “Effect of ground motion duration on earthquake-induced structural collapse" Structural Safety 41: 119–133.
- [15] M. Mashayekhi, M. Harati, A. Darzi, and H. E. Estekanchi, (2020) “Incorporation of strong motion duration in incremental-based seismic assessments" Engineering Structures 223: 111144.
- [16] S. Yaghmaei-Sabegh, Z. Shoghian, and M. Neaz Sheikh, (2014) “A new model for the prediction of earthquake ground-motion duration in Iran" Natural Hazards 70(1): 69–92. DOI: 10.1007/s11069-011-9990-6.
- [17] E. Lumantarna, N. Lam, J. Wilson, and M. Griffith, (2010) “Inelastic displacement demand of strengthdegraded structures" Journal of Earthquake Engineering 14(4): 487–511.
- [18] P. Anbazhagan, M. Neaz Sheikh, K. Bajaj, P. J. Mariya Dayana, H. Madhura, and G. R. Reddy, (2017) “Empirical models for the prediction of ground motion duration for intraplate earthquakes" Journal of Seismology 21(4): 1001–1021. DOI: 10.1007/s10950-017-9648-2.
- [19] A. Meimandi-Parizi, M. Daryoushi, A. Mahdavian, and H. Saffari, (2020) “Ground-motion models for the prediction of significant duration using strong-motion data from Iran" Bulletin of the Seismological Society of America 110(1): 319–330. DOI: 10.1785/0120190109.
- [20] M. Bahrampouri, A. Rodriguez-Marek, and R. A. Green, (2021) “Ground motion prediction equations for significant duration using the KiK-net database" Earthquake Spectra 37(2): 903–920. DOI: 10.1177/8755293020970971.
- [21] S. Chanda, M. C. Raghucharan, K. S. Karthik Reddy, V. Chaudhari, and S. N. Somala, (2021) “Duration prediction of Chilean strong motion data using machine learning" Journal of South American Earth Sciences 109(February): 103253. DOI: 10.1016/j.jsames.2021.103253.
- [22] M. Rezaee Manesh and H. Saffari, (2020) “Empirical equations for the prediction of the bracketed and uniform duration of earthquake ground motion using the Iran database" Soil Dynamics and Earthquake Engineering 137: DOI: 10.1016/j.soildyn.2020.106306.
- [23] L. A. Nolasco, S. García, E. Ovando-Shelley, and M. A. M. Castillo, (2014) “Neural estimation of strong ground motion duration" Geofisica Internacional 53(3): 221–239. DOI: 10.1016/S0016-7169(14)71502-8.
- [24] S. P. Challagulla, C. Parimi, and J. Anmala, (2020) “Prediction of spectral acceleration of a light structure with a flexible secondary system using artificial neural networks" International Journal of Structural Engineering 10(4): 353–379.
- [25] A. Arias, (1970) “A measure of earthquake intensity. Seismic Design for Nuclear Power Plants" Massachusetts Institute of Technology:
- [26] V. D. C. COSMOS, (0) “Consortium for Strong Motion Observation System-Virtual Data Center" Center for Engineering Strong Motion Data (CESMD). Available from URL: https://strongmotioncenter. org/vdc:
- [27] I. Flood and N. Kartam, (1994) “Neural networks in civil engineering. II: Systems and application" Journal of computing in civil engineering 8(2): 149–162.
- [28] I. Flood and P. Christophilos, (1996) “Modeling construction processes using artificial neural networks" Automation in construction 4(4): 307–320.
- [29] I. Flood, (1990) “Simulating the construction process using neural networks" Proceedings of the 7th ISARC– International Association for Automation and Robotics in Construction, Bristol, United Kingdom: 374–382.
- [30] M. Tehranizadeh and M. Safi, (2004) “Application of artificial intelligence for construction of design spectra" Engineering Structures 26(6): 707–720. DOI: 10.1016/j.engstruct.2003.12.006.
- [31] O. R. de Lautour and P. Omenzetter, (2009) “Prediction of seismic-induced structural damage using artificial neural networks" Engineering Structures 31(2): 600–606. DOI: 10.1016/j.engstruct.2008.11.010.
- [32] O. Payán-Serrano, E. Bojórquez, J. Bojórquez, R. Chávez, A. Reyes-Salazar, M. Barraza, A. López-Barraza, H. Rodríguez-Lozoya, and E. Corona, (2017) “Prediction of maximum story drift of MDOF structures under simulated wind loads using Artificial Neural Networks" Applied Sciences (Switzerland) 7(6): DOI: 10.3390/app7060563.
- [33] B. K. Oh, Y. Park, and H. S. Park, (2020) “Seismic response prediction method for building structures using convolutional neural network" Structural Control and Health Monitoring 27(5): 1–17. DOI: 10.1002/stc.2519.
- [34] S. P. Challagulla, C. Parimi, S. Pradeep, and E. Farsangi, (2021) “Estimation of dynamic design parameters for buildings with multiple sliding non-structural elements using machine learning" International Journal of Structural Engineering 11: 147–172. DOI: 10.1504/IJSTRUCTE.2021.10034438.
- [35] M. A. Shahin, M. B. Jaksa, and H. R. Maier, (2002) “Artificial neural network-based settlement prediction formula for shallow foundations on granular soils" Australian Geomechanics Journal 37(4): 45–52.
- [36] S. Debnath and P. Sultana, (2019) “Prediction of Settlement of Shallow Foundation on Cohesionless Soil Using Prediction of Settlement of Shallow Foundation on Cohesionless Soil Using Artificial Neural Network" (March):
- [37] G. N. Smith, (1986) “Probability and statistics in civil engineering" Collins professional and technical books 244:
- [38] S. Yaghmaei-Sabegh, (2018) “Earthquake groundmotion duration estimation using general regression neural network" Scientia Iranica 25(5A): 2425–2439. DOI: 10.24200/sci.2017.4217.
- [39] M. Monjezi, M. Hasanipanah, and M. Khandelwal, (2013) “Evaluation and prediction of blast-induced ground vibration at Shur River Dam, Iran, by artificial neural network" Neural Computing and Applications 22(7): 1637–1643.
- [40] H. Sofiane, N. Bourahla, and L. Nasser, (0) “Significant duration prediction and evaluation of the effects of seismological parameters using neural networks":
- [41] K. Afshari and J. P. Stewart, (2016) “Physically parameterized prediction equations for significant duration in active crustal regions" Earthquake Spectra 32(4): 2057–2081.