- [1] M. Esmaeili Falak and R. Sarkhani Benemaran, (2022) “Investigating the stress-strain behavior of frozen clay using triaxial test" Journal of Structural and Construction Engineering:
- [2] A. Poorjafar, M. Esmaeili-Falak, and H. Katebi, (2021) “Pile-soil interaction determined by laterally loaded fixed head pile group" Geomechanics and Engineering 26(1): 13–25. DOI: 10.12989/gae.2021.26.1.013.
- [3] R. Sarkhani Benemaran, M. Esmaeili-Falak, and H. Katebi, (2021) “Physical and numerical modelling of pilestabilised saturated layered slopes" Proceedings of the Institution of Civil Engineers: Geotechnical Engineering: DOI: 10.1680/jgeen.20.00152.
- [4] N. Esmaeili-Choobar, M. Esmaeili-Falak, M. Roohi- Hir, and S. Keshtzad, (2013) “Evaluation of collapsibility potential at Talesh, Iran" Electronic Journal of Geotechnical Engineering 18 M: 2561–2573.[5] D.-Y. Yoo and N. Banthia, (2016) “Mechanical properties of ultra-high-performance fiber-reinforced concrete: A review" Cement and Concrete Composites 73: 267– 280. DOI: 10.1016/j.cemconcomp.2016.08.001.
- [5] D.-Y. Yoo and N. Banthia, (2016) “Mechanical properties of ultra-high-performance fiber-reinforced concrete: A review" Cement and Concrete Composites 73: 267–280. DOI: 10.1016/j.cemconcomp.2016.08.001.
- [6] M. Esmaeili-Falak and M. Hajialilue-Bonab, (2012) “Numerical studying the effects of gradient degree on slope stability analysis using limit equilibrium and finite element methods" Int J Acad Res 4(4): 216–22.
- [7] D. Wang, C. Shi, Z. Wu, J. Xiao, Z. Huang, and Z. Fang, (2015) “A review on ultra high performance concrete: Part II. Hydration, microstructure and properties" Construction and Building Materials 96: 368–377. DOI: 10.1016/j.conbuildmat.2015.08.095.
- [8] M. Esmaeili-Falak, H. Katebi, and A. Javadi, (2020) “Effect of freezing on stress-strain characteristics of granular and cohesive soils" Journal of Cold Regions Engineering 34(2): DOI: 10.1061/(ASCE)CR.1943-5495.0000205.
- [9] M. Esmaeili-Falak, H. Katebi, and A. Javadi, (2018) “Experimental study of the mechanical behavior of frozen soils - A case study of Tabriz Subway" Periodica Polytechnica Civil Engineering 62(1): 117–125. DOI: 10.3311/PPci.10960.
- [10] R. Yu, P. Spiesz, and H. Brouwers, (2014) “Mix design and properties assessment of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC)" Cement and Concrete Research 56: 29–39. DOI: 10.1016/j.cemconres.2013.11.002.
- [11] C. Wang, C. Yang, F. Liu, C. Wan, and X. Pu, (2012) “Preparation of Ultra-High Performance Concrete with common technology and materials" Cement and Concrete Composites 34(4): 538–544. DOI: 10.1016/j .cemconcomp.2011.11.005.
- [12] R. Yu, P. Spiesz, and H. Brouwers, (2014) “Effect of nano-silica on the hydration and microstructure development of Ultra-High Performance Concrete (UHPC) with a low binder amount" Construction and Building Materials 65: 140–150. DOI: 10.1016/j.conbuildmat.2014.04.063.
- [13] M. Najafzadeh and G. Oliveto, (2022) “Scour Propagation Rates around Offshore Pipelines Exposed to Currents by Applying Data-Driven Models"Water (Switzerland)14(3): DOI: 10.3390/w14030493.
- [14] R. Sarkhani Benemaran, M. Esmaeili-Falak, and A. Javadi, (2022) “Predicting resilient modulus of flexible pavement foundation using extreme gradient boosting based optimised models" International Journal of Pavement Engineering: DOI: 10.1080/10298436.2022 .2095385.
- [15] H. Farhadi and M. Najafzadeh, (2021) “Flood risk mapping by remote sensing data and random forest technique" Water (Switzerland) 13(21): DOI: 10 . 3390/w13213115.
- [16] M. Najafzadeh and S. Niazmardi, (2021) “A Novel Multiple-Kernel Support Vector Regression Algorithm for Estimation of Water Quality Parameters" Natural Resources Research 30(5): 3761–3775. DOI: 10.1007/s11053-021-09895-5.
- [17] M. Esmaeili-Falak, H. Katebi, M. Vadiati, and J. Adamowski, (2019) “Predicting Triaxial Compressive Strength and Young’s Modulus of Frozen Sand Using Artificial Intelligence Methods" Journal of Cold Regions Engineering 33(3): DOI: 10.1061/(ASCE)CR.1943-5495.0000188.
- [18] M. Najafzadeh and A. Ghaemi, (2019) “Prediction of the five-day biochemical oxygen demand and chemical oxygen demand in natural streams using machine learning methods" Environmental Monitoring and Assessment 191(6): DOI: 10.1007/s10661-019-7446-8.
- [19] M. Najafzadeh and M. Zeinolabedini, (2019) “Prognostication of waste water treatment plant performance using efficient soft computing models: An environmental evaluation" Measurement: Journal of the International Measurement Confederation 138: 690–701. DOI: 10.1016/j.measurement.2019.02.014.
- [20] J. Yuan, M. Zhao, and M. Esmaeili-Falak, (2022) “A comparative study on predicting the rapid chloride permeability of self-compacting concrete using meta-heuristic algorithm and artificial intelligence techniques" Structural Concrete 23(2): 753–774. DOI: 10.1002/suco. 202100682.
- [21] D.-M. Ge, L.-C. Zhao, and M. Esmaeili-Falak, (2022) “Estimation of rapid chloride permeability of SCC using hyperparameters optimized random forest models" Journal of Sustainable Cement-Based Materials: DOI: 10.1080/21650373.2022.2093291.
- [22] T. Chen, X. Gao, and M. Ren, (2018) “Effects of autoclave curing and fly ash on mechanical properties of ultrahigh performance concrete" Construction and Building Materials 158: 864–872. DOI: 10.1016/j.conbuildmat.2017.10.074.
- [23] A. Arora, M. Aguayo, H. Hansen, C. Castro, E. Federspiel, B. Mobasher, and N. Neithalath, (2018) “Microstructural packing- and rheology-based binder selection and characterization for Ultra-high Performance Concrete (UHPC)" Cement and Concrete Research 103: 179–190. DOI: 10.1016/j.cemconres.2017.10.013.
- [24] X. Zhang, S. Zhao, Z. Liu, and F. Wang, (2019) “Utilization of steel slag in ultra-high performance concrete with enhanced eco-friendliness" Construction and Building Materials 214: 28–36. DOI: 10.1016/j.conbuildmat.2019.04.106.
- [25] A. Alsalman, C. N. Dang, and W. Micah Hale, (2017) “Development of ultra-high performance concrete with locally available materials" Construction and Building
Materials 133: 135–145. DOI: 10.1016/j.conbuildmat.2016.12.040.
- [26] Z. Wu, C. Shi, K. H. Khayat, and L. Xie, (2018) “Effect of SCM and nano-particles on static and dynamic mechanical properties of UHPC" Construction and Building Materials 182: 118–125. DOI: 10.1016/j.conbuildmat.2018.06.126.
- [27] W. Zhu, L. Huang, L. Mao, and M. Esmaeili-Falak, (2021) “Predicting the uniaxial compressive strength of oil palm shell lightweight aggregate concrete using artificial intelligence-based algorithms" Structural Concrete: DOI: 10.1002/suco.202100656.
- [28] C. Yang, H. Feng, and M. Esmaeili-Falak, (2022) “Predicting the compressive strength of modified recycled aggregate concrete" Structural Concrete: DOI: 10.1002/suco.202100681.
- [29] R. S. Benemaran and M. Esmaeili-Falak, (2020) “Optimization of cost and mechanical properties of concrete with admixtures using MARS and PSO" Computers and Concrete 26(4): 309–316. DOI: 10.12989/cac.2020.26.4.309.
- [30] W. Ben Chaabene, M. Flah, and M. L. Nehdi, (2020) “Machine learning prediction of mechanical properties of concrete: Critical review" Construction and Building Materials 260: DOI: 10.1016/j .conbuildmat.2020.119889.
- [31] J. Zhang, Y. Huang, F. Aslani, G. Ma, and B. Nener, (2020) “A hybrid intelligent system for designing optimal proportions of recycled aggregate concrete" Journal of Cleaner Production 273: DOI: 10.1016/j.jclepro.2020.122922.
- [32] T. Han, A. Siddique, K. Khayat, J. Huang, and A. Kumar, (2020) “An ensemble machine learning approach for prediction and optimization of modulus of elasticity of recycled aggregate concrete" Construction and Building Materials 244: DOI: 10.1016/j.conbuildmat.2020.118271.
- [33] Q. Han, C. Gui, J. Xu, and G. Lacidogna, (2019) “A generalized method to predict the compressive strength of high-performance concrete by improved random forest algorithm" Construction and Building Materials 226: 734–742. DOI: 10.1016/j.conbuildmat.2019.07.315.
- [34] A. K. Al-Shamiri, T.-F. Yuan, and J. H. Kim, (2020) “Non-tuned machine learning approach for predicting the compressive strength of high-performance concrete" Materials 13(5): DOI: 10.3390/ma13051023.
- [35] D. Fan, R. Yu, Z. Shui, C. Wu, Q. Song, Z. Liu, Y. Sun, X. Gao, and Y. He, (2020) “A new design approach of steel fibre reinforced ultra-high performance concrete composites: Experiments and modeling" Cement and Concrete Composites 110: DOI: 10.1016/j.cemconcomp.2020.103597.
- [36] A. Marani and M. L. Nehdi, (2020) “Machine learning prediction of compressive strength for phase change materials integrated cementitious composites" Construction and Building Materials 265: DOI: 10.1016/j.conbuildmat.2020.120286.
- [37] A. R. Suleiman and M. L. Nehdi, (2017) “Modeling self-healing of concrete using hybrid genetic algorithmartificial neural network" Materials 10(2): DOI: 10.3390/ma10020135.
- [38] O. R. Abuodeh, J. A. Abdalla, and R. A. Hawileh, (2020) “Assessment of compressive strength of Ultra-high Performance Concrete using deep machine learning techniques" Applied Soft Computing Journal 95: DOI: 10.1016/j.asoc.2020.106552.
- [39] M. Alkaysi and S. El-Tawil, (2017) “Factors affecting bond development between Ultra High Performance Concrete (UHPC) and steel bar reinforcement" Construction and Building Materials 144: 412–422. DOI: 10.1016/j.conbuildmat.2017.03.091.
- [40] M. Hassan and K. Wille, (2017) “Experimental impact analysis on ultra-high performance concrete (UHPC) for achieving stress equilibrium (SE) and constant strain rate (CSR) in Split Hopkinson pressure bar (SHPB) using pulse shaping technique" Construction and Building Materials 144: 747–757. DOI: 10.1016/j.conbuildmat.2017.03.185.
- [41] H.-O. Jang, H.-S. Lee, K. Cho, and J. Kim, (2017) “Experimental study on shear performance of plain construction joints integrated with ultra-high performance concrete (UHPC)" Construction and Building Materials 152: 16–23. DOI: 10.1016/j.conbuildmat.2017.06.156.
- [42] Z. Liu, S. El-Tawil, W. Hansen, and F. Wang, (2018) “Effect of slag cement on the properties of ultra-high performance concrete" Construction and Building Materials 190: 830–837. DOI: 10.1016/j.conbuildmat.2018.09.173.
- [43] M. Liew, M. Aswin, K. U. Danyaro, B. S. Mohammed, and A. Al-Yacouby, (2020) “Investigation of fibers reinforced engineered cementitious composites properties using quartz powder" Materials 13(11): DOI: 10.3390/ma13112428.
- [44] A. Mohan, S. Karthika, J. Ajith, L. Dhal, and M. Tholkapiyan, (2020) “Investigation on ultra high strength slurry infiltrated multiscale fibre reinforced concrete" Materials Today: Proceedings 22: 904–911. DOI: 10.1016/j.matpr.2019.11.102.
- [45] A. H. A. Raheem, M. Mahdy, and A. A. Mashaly, (2019) “Mechanical and fracture mechanics properties of ultra-high-performance concrete" Construction and Building Materials 213: 561–566. DOI: 10.1016/j.conbuildmat.2019.03.298.
- [46] G. Gautham Kishore Reddy and P. Ramadoss, (2020) “Influence of alccofine incorporation on the mechanical behavior of ultrahigh performance concrete (UHPC)" Materials Today: Proceedings 33: 789–797. DOI: 10.1016/j.matpr.2020.06.180.
- [47] P. Shen, L. Lu, Y. He, F. Wang, and S. Hu, (2019) “The effect of curing regimes on the mechanical properties, nanomechanical properties and microstructure of ultra-high performance concrete" Cement and Concrete Research 118: 1–13. DOI: 10.1016/j.cemconres.2019.01.004.
- [48] P. Shen, L. Lu, Y. He, F. Wang, J. Lu, H. Zheng, and S. Hu, (2020) “Investigation on expansion effect of the expansive agents in ultra-high performance concrete" Cement and Concrete Composites 105: DOI: 10.1016/j.cemconcomp.2019.103425.
- [49] X. Liang, C. Wu, Y. Su, Z. Chen, and Z. Li, (2018) “Development of ultra-high performance concrete with high fire resistance" Construction and Building Materials 179: 400–412. DOI: 10.1016/j.conbuildmat.2018.05.241.
- [50] A. Alsalman, C. N. Dang, G. S. Prinz, and W. M. Hale, (2017) “Evaluation of modulus of elasticity of ultrahigh performance concrete" Construction and Building Materials 153: 918–928. DOI: 10.1016/j.conbuildmat.2017.07.158.
- [51] Y. Shi, G. Long, C. Ma, Y. Xie, and J. He, (2019) “Design and preparation of ultra-high performance concrete with low environmental impact" Journal of Cleaner Production 214: 633–643. DOI: 10.1016/j.jclepro.2018.12.318.
- [52] M. Shafieifar, M. Farzad, and A. Azizinamini, (2017) “Experimental and numerical study on mechanical properties of Ultra High Performance Concrete (UHPC)" Construction and Building Materials 156: 402–411. DOI: 10.1016/j.conbuildmat.2017.08.170.
- [53] M. G. Sohail, B. Wang, A. Jain, R. Kahraman, N. G. Ozerkan, B. Gencturk, M. Dawood, and A. Belarbi, (2018) “Advancements in concrete mix designs: Highperformance and ultrahigh-performance concretes from 1970 to 2016" Journal of Materials in Civil Engineering 30(3): DOI: 10.1061/(ASCE)MT.1943-5533.0002144.
- [54] X. Wang, R. Yu, Q. Song, Z. Shui, Z. Liu, S. Wu, and D. Hou, (2019) “Optimized design of ultra-high performance concrete (UHPC) with a high wet packing density" Cement and Concrete Research 126: DOI: 10.1016/j.cemconres.2019.105921.
- [55] Z.Wu, K. H. Khayat, and C. Shi, (2019) “Changes in rheology and mechanical properties of ultra-high performance concrete with silica fume content" Cement and Concrete Research 123: DOI: 10.1016/j.cemconres. 2019.105786.
- [56] K. Wille and C. Boisvert-Cotulio, (2015) “Material efficiency in the design of ultra-high performance concrete" Construction and Building Materials 86: 33–43. DOI:10.1016/j.conbuildmat.2015.03.087.
- [57] X. Chen, D.-w. Wan, L.-z. Jin, K. Qian, and F. Fu, (2019) “Experimental studies and microstructure analysis for ultra high-performance reactive powder concrete" Construction and Building Materials 229: DOI: 10.1016/j.conbuildmat.2019.116924.
- [58] M. Chadli, N. Tebbal, and M. Mellas, (2021) “Impact of elevated temperatures on the behavior and microstructure of reactive powder concrete" Construction and Building Materials 300: DOI: 10.1016/j.conbuildmat.2021.124031.
- [59] M. Ghrici, S. Kenai, and M. Said-Mansour, (2007) “Mechanical properties and durability of mortar and concrete containing natural pozzolana and limestone blended cements" Cement and Concrete Composites 29(7):542–549. DOI: 10.1016/j.cemconcomp.2007.04.009.
- [60] B. A. Graybeal, (2007) “Compressive behavior of ultrahigh-performance fiber-reinforced concrete" ACI Materials Journal 104(2): 146–152.
- [61] I. Gamal, K. Elsayed, M. H. Makhlouf, and M. Alaa, (2019) “Properties of reactive powder concrete using local materials and various curing conditions" European Journal of Engineering and Technology Research 4(6): 74–83.
- [62] K. Habel, M. Viviani, E. Denarié, and E. Brühwiler, (2006) “Development of the mechanical properties of an Ultra-High Performance Fiber Reinforced Concrete (UHPFRC)" Cement and Concrete Research 36(7): 1362–1370. DOI: 10.1016/j.cemconres.2006.03.009.
- [63] A. Hassan, S. Jones, and G. Mahmud, (2012) “Experimental test methods to determine the uniaxial tensile and compressive behaviour of Ultra High Performance Fibre Reinforced Concrete(UHPFRC)" Construction and Building Materials 37: 874–882. DOI: 10.1016/j.conbuildmat.2012.04.030.
- [64] M. Ataei, S. Mohammadi, and R. Mikaeil, (2019) “Evaluating performance of cutting machines during sawing dimension stones" Journal of Central South University 26(7): 1934–1945. DOI: 10.1007/s11771-019-4144-1.
- [65] J.Wang, Q. Zhou, H. Jiang, and R. Hou, (2015) “Short-Term Wind Speed Forecasting Using Support Vector Regression Optimized by Cuckoo Optimization Algorithm" Mathematical Problems in Engineering 2015: DOI: 10.1155/2015/619178.
- [66] R. Rajabioun, (2011) “Cuckoo optimization algorithm" Applied Soft Computing Journal 11(8): 5508–5518. DOI: 10.1016/j.asoc.2011.05.008.
- [67] B. Roshanravan, H. Aghajani, M. Yousefi, and O. Kreuzer, (2019) “Particle Swarm Optimization Algorithm for Neuro-Fuzzy Prospectivity Analysis Using Continuously Weighted Spatial Exploration Data" Natural Resources Research 28(2): 309–325. DOI: 10.1007/s11053-018-9385-4.
- [68] X.-S. Yang, (2010) “A new metaheuristic Bat-inspired Algorithm" Studies in Computational Intelligence 284: 65–74. DOI: 10.1007/978-3-642-12538-6_6.
- [69] M.-R. Chen, Y.-Y. Huang, G.-Q. Zeng, K.-D. Lu, and L.-Q. Yang, (2021) “An improved bat algorithm hybridized with extremal optimization and Boltzmann selection" Expert Systems with Applications 175: DOI: 10.1016/j.eswa.2021.114812.
- [70] J. Kennedy and R. Eberhart. “Particle swarm optimization”. In: 4. Cited by: 49004. 1995, 1942–1948.
- [71] V. Vapnik. The nature of statistical learning theory. Springer science & business media, 1999.
- [72] H. Su, X. Li, B. Yang, and Z.Wen, (2018) “Wavelet support vector machine-based prediction model of dam deformation" Mechanical Systems and Signal Processing 110: 412–427. DOI: 10.1016/j.ymssp.2018.03.022.
- [73] T. Ayodele, A. Ogunjuyigbe, A. Amedu, and J. Munda, (2019) “Prediction of global solar irradiation using hybridized k-means and support vector regression algorithms" Renewable Energy Focus 29: 78–93. DOI: 10.1016/j.ref.2019.03.003.
- [74] F.-K.Wang and T. Mamo, (2018) “A hybrid model based on support vector regression and differential evolution for remaining useful lifetime prediction of lithium-ion batteries" Journal of Power Sources 401: 49–54. DOI: 10.1016/j.jpowsour.2018.08.073.
- [75] T. A. Oyehan, I. O. Alade, A. Bagudu, K. O. Sulaiman, S. O. Olatunji, and T. A. Saleh, (2018) “Predicting of the refractive index of haemoglobin using the Hybrid GASVR approach" Computers in Biology and Medicine 98: 85–92. DOI: 10.1016/j.compbiomed.2018.04.024.
- [76] W. Yao, C. Zhang, H. Hao, X. Wang, and X. Li, (2018) “A support vectormachine approach to estimate global solar radiation with the influence of fog and haze" Renewable Energy 128: 155–162. DOI: 10.1016/j.renene.2018.05.069.
- [77] K. O. Akande, T. O. Owolabi, S. O. Olatunji, and A. AbdulRaheem, (2017) “A hybrid particle swarm optimization and support vector regression model for modelling permeability prediction of hydrocarbon reservoir" Journal of Petroleum Science and Engineering 150: 43–53. DOI: 10.1016/j.petrol.2016.11.033.
- [78] M.-W. Li, J. Geng, S. Wang, and W.-C. Hong, (2017) “Hybrid chaotic quantum bat algorithm with SVR in electric load forecasting" Energies 10(12): DOI: 10.3390/en10122180.
- [79] T. O. Owolabi, (2019) “Modeling the magnetocaloric effect of manganite using hybrid genetic and support vector regression algorithms" Physics Letters, Section A: General, Atomic and Solid State Physics 383(15): 1782–1790. DOI: 10.1016/j.physleta.2019.02.036.
- [80] V. Cherkassky and Y. Ma, (2004) “Practical selection of SVM parameters and noise estimation for SVM regression" Neural Networks 17(1): 113–126. DOI: 10.1016/S0893-6080(03)00169-2.
- [81] W.-C. Hong, Y. Dong, W. Y. Zhang, L.-Y. Chen, and B. K. Panigrahi, (2013) “Cyclic electric load forecasting by seasonal SVR with chaotic genetic algorithm" International Journal of Electrical Power and Energy Systems 44(1): 604–614. DOI: 10.1016/j.ijepes.2012.08.010.