- [1] W. A. Kalender. Computed tomography: fundamentals, system technology, image quality, applications. 4th. John Wiley Sons, 2011.
- [2] A. Vidhyalakshmi and C. Priya. Medical big data mining and processing in e-health care. 2. An Industrial IoT Approach for Pharmaceutical Industry Growth. Academic Press, 2020, 1–30. DOI: 10.1016/B978-0-12-821326-1.00001-2.
- [3] S. Kumar, A. K. Bhandari, A. Raj, and K. Swaraj, (2021) “Triple Clipped Histogram-Based Medical Image Enhancement Using Spatial Frequency" IEEE Transactions on NanoBioscience 20(3): 278–286. DOI: 10.1109/TNB.2021.3064077.
- [4] A. Gandhamal, S. Talbar, S. Gajre, A. F. M. Hani, and D. Kumar, (2017) “Local gray level S-curve transformation – A generalized contrast enhancement technique for medical images" Computers in Biology and Medicine 83: 120–133. DOI: 10.1016/j.compbiomed.2017.03.001.
- [5] Z. Li, Z. Jia, J. Yang, and N. Kasabov, (2020) “An efficient and high quality medical CT image enhancement algorithm" International Journal of Imaging Systems Technology 30(4): 939–949. DOI: 10.1002/ima.22417.
- [6] D. Völgyes, A. C. T. Martinsen, A. Stray-Pedersen, D. Waaler, and M. Pedersen, (2018) “A weighted histogram-based tone mapping algorithm for CT images" Algorithms 11(8): DOI: 10.3390/a11080111.
- [7] J. W. Wiegert and S. M. Schönberg, (2013) “A review of CT noise reduction techniques" European Radiology 23(6): 1639–1650.
- [8] J. Dabass and R. Vig. “Biomedical Image Enhancement Using Different Techniques - A Comparative Study”. In: 2018 Science and Analytics. Ed. by B. Panda, S. Sharma, and N. R. Roy. Springer Singapore, 260–286. DOI: 10.1007/978-981-10-8527-7_22.
- [9] M. K. Kalra, S. Patel, and S. Saini, (2014) “Dual-energy CT imaging: principles, techniques, and clinical applications" Radiology 271(2): 362–373. DOI: 10.1109/TBME.2017.2700627.
- [10] R. Gonzalez and R. Woods. Digital Image Processing. 4th. Edinburgh Gate, Harlow, Essex, England: Pearson Education Limited, 2017.
- [11] Q. Shi, S. Yin, K. Wang, L. Teng, and H. Li, (2022) “Multichannel convolutional neural network-based fuzzy active contour model for medical image segmentation" Evolving Systems 13(4): 535–549. DOI: 10.1007/s12530-021-09392-3.
- [12] S. Yin, H. Li, D. Liu, and S. Karim, (2020) “Active contour modal based on density-oriented BIRCH clustering method for medical image segmentation" Multimedia Tools and Applications 79(41): 31049–31068. DOI: 10.1007/s11042-020-09640-9.
- [13] M. Zhou, K. Jin, S. Wang, J. Ye, and D. Qian, (2018) “Color Retinal Image Enhancement Based on Luminosity and Contrast Adjustment" IEEE Transactions on Biomedical Engineering 65(3): 521–527. DOI: 10.1109/TBME.2017.2700627.
- [14] K. Yeong-Taeg, (1997) “Contrast enhancement using brightness preserving bi-histogram equalization" IEEE Transactions on Consumer Electronics 43(1): 1–8. DOI: 10.1109/30.580378.
- [15] W. Yu, C. Qian, and Z. Baeomin, (1999) “Image enhancement based on equal area dualistic sub-image histogram equalization method" IEEE Transactions on Consumer Electronics 45(1): 68–75. DOI: 10.1109/30.754419.
- [16] Y. Mousania and S. Karimi. “A Novel Improved Method of RMSHE-Based Technique for Mammography Images Enhancement”. In: 2019 Fundamental Research in Electrical Engineering. Ed. by S. Montaser Kouhsari. Springer Singapore, 31–42. DOI: 10.1007/ 978-981-10-8672-4_3.
- [17] K. S. Sim, S. Chung, and Y. Zheng, (2018) “Contrast enhancement brain infarction images using sigmoidal eliminating extreme level weight distributed histogram equalization" Journal of innovation of Computer Information Control 14(3): 1043–1056.
- [18] P. Babu and V. Rajamani, (2015) “Contrast enhancement using real coded genetic algorithm based modified histogram equalization for gray scale images" International Journal of Imaging Systems Technology 25(1): 24–32. DOI: 10.1002/ima.22117.
- [19] B. Subramani and M. Veluchamy, (2019) “Fuzzy contextual inference system for medical image enhancement" Measurement 148: 1–10. DOI: 10.1016/j.measurement.2019.106967.
- [20] G. Siracusano, A. La Corte, M. Gaeta, G. Cicero, M. Chiappini, and G. Finocchio, (2020) “Pipeline for advanced contrast enhancement (PACE) of chest x-ray in evaluating COVID-19 patients by combining bidimensional empirical mode decomposition and contrast limited adaptive histogram equalization (CLAHE)" Sustainability 12(20): 1–17. DOI: 10.3390/su12208573.
- [21] Z. Al-Ameen. “Contrast Enhancement of Medical Images Using Statistical Methods with Image Processing Concepts”. In: 2020 6th International Engineering Conference “Sustainable Technology and Development" (IEC), 169–173. DOI: 10.1109/IEC49899.2020.9122925.
- [22] A. Mehmood, I. R. Khan, H. Dawood, and H. Dawood, (2021) “A non-uniform quantization scheme for visualization of CT images" Mathematical Biosciences and Engineering 18(4): 4311–4326. DOI: 10.3934/mbe.2021216.
- [23] X. Yuan, F. Dazi, and L. V. Wang, (2002) “Exact frequency-domain reconstruction for thermoacoustic tomography. I. Planar geometry" IEEE Transactions on Medical Imaging 21(7): 823–828. DOI: 10.1109/TMI.2002.801172.
- [24] H. Demirel, G. Anbarjafari, and M. N. S. Jahromi. “Image equalization based on singular value decomposition”. In: 2008 23rd International Symposium on Computer and Information Sciences, 1–5. DOI: 10.1109/ISCIS.2008.4717878.
- [25] A. Zear, A. K. Singh, and P. Kumar, (2018) “A proposed secure multiple watermarking technique based on DWT, DCT and SVD for application in medicine" Multimedia Tools and Applications 77(4): 4863–4882. DOI: 10.1007/s11042-016-3862-8.
- [26] T. Celik, (2016) “Spatial Mutual Information and PageRank-Based Contrast Enhancement and QualityAware Relative Contrast Measure" IEEE Transactions on Image Processing 25(10): 4719–4728. DOI: 10.1109/TIP.2016.2599103.
- [27] R. Atta and R. F. Abdel-Kader, (2015) “Brightness preserving based on singular value decomposition for image contrast enhancement" Optik 126(7): 799–803. DOI: 10.1016/j.ijleo.2015.02.025.
- [28] J. S and B. T. A, (2018) “Sharpening enhancement technique for MR images to enhance the segmentation" Biomedical Signal Processing and Control 41: 21–30. DOI: 10.1016/j.bspc.2017.11.007.
- [29] Z. Huang, T. Zhang, Q. Li, and H. Fang, (2016) “Adaptive gamma correction based on cumulative histogram for enhancing near-infrared images" Infrared Physics Technology 79: 205–215. DOI: 10.1016/j.infrared.2016.11.001.
- [30] S. C. Huang, F. C. Cheng, and Y. S. Chiu, (2013) “Efficient Contrast Enhancement Using Adaptive Gamma Correction With Weighting Distribution" IEEE Transactions on Image Processing 22(3): 1032–1041. DOI: 10.1109/TIP.2012.2226047.
- [31] M. Veluchamy and B. Subramani, (2019) “Image contrast and color enhancement using adaptive gamma correction and histogram equalization" Optik 183: 329–337. DOI: 10.1016/j.ijleo.2019.02.054.
- [32] F. Kallel and A. B. Hamida, (2017) “A New Adaptive Gamma Correction Based Algorithm Using DWTSVD for Non-Contrast CT Image Enhancement" IEEE Transactions on NanoBioscience 16(8): 666–675. DOI: 10.1109/TNB.2017.2771350.
- [33] M. Tiwari and B. Gupta. “Brightness preserving contrast enhancement of medical images using adaptive gamma correction and homomorphic filtering”. In: 2016 IEEE Students’ Conference on Electrical, Electronics and Computer Science (SCEECS), 1–4. DOI: 10.1109/SCEECS.2016.7509287.
- [34] V. Teh, K. S. Sim, and E. K. Wong, (2016) “Brain early infarct detection using gamma correction extremelevel eliminating with weighting distribution" Scanning 38(6): 842–856. DOI: 10.1002/sca.21334.
- [35] W. Yu, H. Yao, D. Li, G. Li, and H. Shi, (2021) “Glagc: Adaptive dual-gamma function for image illumination perception and correction in the wavelet domain" Sensors 21(3): 1–21. DOI: 10.3390/s21030845.
- [36] C. E. Kahn, J. A. Carrino, M. J. Flynn, D. J. Peck, and S. C. Horii, (2007) “DICOM and radiology: past, present, and future" Journal of the American College of Radiology 4(9): 652–657. DOI: 10.1016/j.jacr.2007.06.004.
- [37] A. Siddiq, I. R. Khan, and J. Ahmed. “Evaluation of the Encoding Accuracy of the PQ based HDR Content Delivery Formats”. In: 2020 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), 1132–1138.
- [38] A. E. Chang, Y. L. Matory, A. J. Dwyer, S. C. Hill, M. E. Girton, S. M. Steinberg, R. H. Knop, J. A. Frank, D. Hyams, and J. L. Doppman, (1987) “Magnetic resonance imaging versus computed tomography in the evaluation of soft tissue tumors of the extremities" Annals of surgery 205(4): 340–348. DOI: 10.1097/00000658- 198704000-00002.
- [39] T. Madmad and C. D. Vleeschouwer. “Bilateral Histogram Equalization for X-Ray Image Tone Mapping”. In: 2019 IEEE International Conference on Image Processing (ICIP), 3507–3511. DOI: 10.1109/ICIP.2019.8803516.
- [40] F. Durand and J. Dorsey. “Fast bilateral filtering for the display of high-dynamic-range images”. In: 2002, 29th annual conference on Computer graphics and interactive techniques. Association for Computing Machinery, 257–266. DOI: 10.1145/566570.566574.
- [41] M. Trentacoste, R. Mantiuk, W. Heidrich, and F. Dufrot. “Unsharp masking, countershading and halos: enhancements or artifacts?” In: 2012, Computer Graphics Forum. 31. Wiley Online Library, 555–564. DOI: 10.1111/j.1467-8659.2012.03056.x.
- [42] Z. Farbman, R. Fattal, D. Lischinski, and R. Szeliski, (2008) “Edge-preserving decompositions for multi-scale tone and detail manipulation" ACM Transaction on Graphics 27(3): 1–10. DOI: 10.1145/1360612.1360666.
- [43] J. Kuang, G. M. Johnson, and M. D. Fairchild, (2007) “iCAM06: A refined image appearance model for HDR image rendering" Journal of Visual Communication and Image Representation 18(5): 406–414. DOI: 10.1016/j.jvcir.2007.06.003.
- [44] I. R. Khan, T. A. Alotaibi, A. Siddiq, and F. Bourennani, (2022) “Evaluating Quantitative Metrics of ToneMapped Images" IEEE Transactions on Image Processing 31: 1751–1760. DOI: 10.1109/TIP.2022.3146640.