Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Ishtiaq Rasool Khan1This email address is being protected from spambots. You need JavaScript enabled to view it., Waqar Mirza2, Asif Siddiq2, Seong-O Shim1

1University of Jeddah, College of Computer Science and Engineering, Jeddah, Saudi Arabia, 21589

2Pakistan Institute Of Engineering And Technology, Department of Electrical Engineering, Multan, Pakistan, 61000


 

Received: March 7, 2023
Accepted: June 18, 2023
Publication Date: July 15, 2023

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202403_27(3).0001  


Medical imaging enables doctors to provide faster and more accurate diagnoses of different conditions. Medical images are generally very dark and frequently exhibit degradations such as poor detail or low contrast, which may impact the accuracy and speed of diagnosis. This paper proposes an effective and efficient technique to enhance CT images. The image is first decomposed into base and detail layers, which are individually enhanced using adaptive gamma correction, and recombined to obtain the resultant image with better details and brightness without added noise and artifacts such as halo. We present a comprehensive study using 51 test images evaluated by 50 human subjects to compare the performance of the proposed method with the existing state of the art. In addition, we use six commonly used objective metrics to score the images produced by the proposed method and seven existing state of the art enhancement methods. The proposed method outperforms the existing techniques in both objective and subjective evaluations and appears as the most effective way of enhancing medical images’ quality without producing artifacts.


Keywords: Medical imaging; CT Images; image enhancement; gamma correction; image decomposition


  1. [1] W. A. Kalender. Computed tomography: fundamentals, system technology, image quality, applications. 4th. John Wiley Sons, 2011.
  2. [2] A. Vidhyalakshmi and C. Priya. Medical big data mining and processing in e-health care. 2. An Industrial IoT Approach for Pharmaceutical Industry Growth. Academic Press, 2020, 1–30. DOI: 10.1016/B978-0-12-821326-1.00001-2.
  3. [3] S. Kumar, A. K. Bhandari, A. Raj, and K. Swaraj, (2021) “Triple Clipped Histogram-Based Medical Image Enhancement Using Spatial Frequency" IEEE Transactions on NanoBioscience 20(3): 278–286. DOI: 10.1109/TNB.2021.3064077.
  4. [4] A. Gandhamal, S. Talbar, S. Gajre, A. F. M. Hani, and D. Kumar, (2017) “Local gray level S-curve transformation – A generalized contrast enhancement technique for medical images" Computers in Biology and Medicine 83: 120–133. DOI: 10.1016/j.compbiomed.2017.03.001.
  5. [5] Z. Li, Z. Jia, J. Yang, and N. Kasabov, (2020) “An efficient and high quality medical CT image enhancement algorithm" International Journal of Imaging Systems Technology 30(4): 939–949. DOI: 10.1002/ima.22417.
  6. [6] D. Völgyes, A. C. T. Martinsen, A. Stray-Pedersen, D. Waaler, and M. Pedersen, (2018) “A weighted histogram-based tone mapping algorithm for CT images" Algorithms 11(8): DOI: 10.3390/a11080111.
  7. [7] J. W. Wiegert and S. M. Schönberg, (2013) “A review of CT noise reduction techniques" European Radiology 23(6): 1639–1650.
  8. [8] J. Dabass and R. Vig. “Biomedical Image Enhancement Using Different Techniques - A Comparative Study”. In: 2018 Science and Analytics. Ed. by B. Panda, S. Sharma, and N. R. Roy. Springer Singapore, 260–286. DOI: 10.1007/978-981-10-8527-7_22.
  9. [9] M. K. Kalra, S. Patel, and S. Saini, (2014) “Dual-energy CT imaging: principles, techniques, and clinical applications" Radiology 271(2): 362–373. DOI: 10.1109/TBME.2017.2700627.
  10. [10] R. Gonzalez and R. Woods. Digital Image Processing. 4th. Edinburgh Gate, Harlow, Essex, England: Pearson Education Limited, 2017.
  11. [11] Q. Shi, S. Yin, K. Wang, L. Teng, and H. Li, (2022) “Multichannel convolutional neural network-based fuzzy active contour model for medical image segmentation" Evolving Systems 13(4): 535–549. DOI: 10.1007/s12530-021-09392-3.
  12. [12] S. Yin, H. Li, D. Liu, and S. Karim, (2020) “Active contour modal based on density-oriented BIRCH clustering method for medical image segmentation" Multimedia Tools and Applications 79(41): 31049–31068. DOI: 10.1007/s11042-020-09640-9.
  13. [13] M. Zhou, K. Jin, S. Wang, J. Ye, and D. Qian, (2018) “Color Retinal Image Enhancement Based on Luminosity and Contrast Adjustment" IEEE Transactions on Biomedical Engineering 65(3): 521–527. DOI: 10.1109/TBME.2017.2700627.
  14. [14] K. Yeong-Taeg, (1997) “Contrast enhancement using brightness preserving bi-histogram equalization" IEEE Transactions on Consumer Electronics 43(1): 1–8. DOI: 10.1109/30.580378.
  15. [15] W. Yu, C. Qian, and Z. Baeomin, (1999) “Image enhancement based on equal area dualistic sub-image histogram equalization method" IEEE Transactions on Consumer Electronics 45(1): 68–75. DOI: 10.1109/30.754419.
  16. [16] Y. Mousania and S. Karimi. “A Novel Improved Method of RMSHE-Based Technique for Mammography Images Enhancement”. In: 2019 Fundamental Research in Electrical Engineering. Ed. by S. Montaser Kouhsari. Springer Singapore, 31–42. DOI: 10.1007/ 978-981-10-8672-4_3.
  17. [17] K. S. Sim, S. Chung, and Y. Zheng, (2018) “Contrast enhancement brain infarction images using sigmoidal eliminating extreme level weight distributed histogram equalization" Journal of innovation of Computer Information Control 14(3): 1043–1056.
  18. [18] P. Babu and V. Rajamani, (2015) “Contrast enhancement using real coded genetic algorithm based modified histogram equalization for gray scale images" International Journal of Imaging Systems Technology 25(1): 24–32. DOI: 10.1002/ima.22117.
  19. [19] B. Subramani and M. Veluchamy, (2019) “Fuzzy contextual inference system for medical image enhancement" Measurement 148: 1–10. DOI: 10.1016/j.measurement.2019.106967.
  20. [20] G. Siracusano, A. La Corte, M. Gaeta, G. Cicero, M. Chiappini, and G. Finocchio, (2020) “Pipeline for advanced contrast enhancement (PACE) of chest x-ray in evaluating COVID-19 patients by combining bidimensional empirical mode decomposition and contrast limited adaptive histogram equalization (CLAHE)" Sustainability 12(20): 1–17. DOI: 10.3390/su12208573.
  21. [21] Z. Al-Ameen. “Contrast Enhancement of Medical Images Using Statistical Methods with Image Processing Concepts”. In: 2020 6th International Engineering Conference “Sustainable Technology and Development" (IEC), 169–173. DOI: 10.1109/IEC49899.2020.9122925.
  22. [22] A. Mehmood, I. R. Khan, H. Dawood, and H. Dawood, (2021) “A non-uniform quantization scheme for visualization of CT images" Mathematical Biosciences and Engineering 18(4): 4311–4326. DOI: 10.3934/mbe.2021216.
  23. [23] X. Yuan, F. Dazi, and L. V. Wang, (2002) “Exact frequency-domain reconstruction for thermoacoustic tomography. I. Planar geometry" IEEE Transactions on Medical Imaging 21(7): 823–828. DOI: 10.1109/TMI.2002.801172.
  24. [24] H. Demirel, G. Anbarjafari, and M. N. S. Jahromi. “Image equalization based on singular value decomposition”. In: 2008 23rd International Symposium on Computer and Information Sciences, 1–5. DOI: 10.1109/ISCIS.2008.4717878.
  25. [25] A. Zear, A. K. Singh, and P. Kumar, (2018) “A proposed secure multiple watermarking technique based on DWT, DCT and SVD for application in medicine" Multimedia Tools and Applications 77(4): 4863–4882. DOI: 10.1007/s11042-016-3862-8.
  26. [26] T. Celik, (2016) “Spatial Mutual Information and PageRank-Based Contrast Enhancement and QualityAware Relative Contrast Measure" IEEE Transactions on Image Processing 25(10): 4719–4728. DOI: 10.1109/TIP.2016.2599103.
  27. [27] R. Atta and R. F. Abdel-Kader, (2015) “Brightness preserving based on singular value decomposition for image contrast enhancement" Optik 126(7): 799–803. DOI: 10.1016/j.ijleo.2015.02.025.
  28. [28] J. S and B. T. A, (2018) “Sharpening enhancement technique for MR images to enhance the segmentation" Biomedical Signal Processing and Control 41: 21–30. DOI: 10.1016/j.bspc.2017.11.007.
  29. [29] Z. Huang, T. Zhang, Q. Li, and H. Fang, (2016) “Adaptive gamma correction based on cumulative histogram for enhancing near-infrared images" Infrared Physics Technology 79: 205–215. DOI: 10.1016/j.infrared.2016.11.001.
  30. [30] S. C. Huang, F. C. Cheng, and Y. S. Chiu, (2013) “Efficient Contrast Enhancement Using Adaptive Gamma Correction With Weighting Distribution" IEEE Transactions on Image Processing 22(3): 1032–1041. DOI: 10.1109/TIP.2012.2226047.
  31. [31] M. Veluchamy and B. Subramani, (2019) “Image contrast and color enhancement using adaptive gamma correction and histogram equalization" Optik 183: 329–337. DOI: 10.1016/j.ijleo.2019.02.054.
  32. [32] F. Kallel and A. B. Hamida, (2017) “A New Adaptive Gamma Correction Based Algorithm Using DWTSVD for Non-Contrast CT Image Enhancement" IEEE Transactions on NanoBioscience 16(8): 666–675. DOI: 10.1109/TNB.2017.2771350.
  33. [33] M. Tiwari and B. Gupta. “Brightness preserving contrast enhancement of medical images using adaptive gamma correction and homomorphic filtering”. In: 2016 IEEE Students’ Conference on Electrical, Electronics and Computer Science (SCEECS), 1–4. DOI: 10.1109/SCEECS.2016.7509287.
  34. [34] V. Teh, K. S. Sim, and E. K. Wong, (2016) “Brain early infarct detection using gamma correction extremelevel eliminating with weighting distribution" Scanning 38(6): 842–856. DOI: 10.1002/sca.21334.
  35. [35] W. Yu, H. Yao, D. Li, G. Li, and H. Shi, (2021) “Glagc: Adaptive dual-gamma function for image illumination perception and correction in the wavelet domain" Sensors 21(3): 1–21. DOI: 10.3390/s21030845.
  36. [36] C. E. Kahn, J. A. Carrino, M. J. Flynn, D. J. Peck, and S. C. Horii, (2007) “DICOM and radiology: past, present, and future" Journal of the American College of Radiology 4(9): 652–657. DOI: 10.1016/j.jacr.2007.06.004.
  37. [37] A. Siddiq, I. R. Khan, and J. Ahmed. “Evaluation of the Encoding Accuracy of the PQ based HDR Content Delivery Formats”. In: 2020 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), 1132–1138.
  38. [38] A. E. Chang, Y. L. Matory, A. J. Dwyer, S. C. Hill, M. E. Girton, S. M. Steinberg, R. H. Knop, J. A. Frank, D. Hyams, and J. L. Doppman, (1987) “Magnetic resonance imaging versus computed tomography in the evaluation of soft tissue tumors of the extremities" Annals of surgery 205(4): 340–348. DOI: 10.1097/00000658- 198704000-00002.
  39. [39] T. Madmad and C. D. Vleeschouwer. “Bilateral Histogram Equalization for X-Ray Image Tone Mapping”. In: 2019 IEEE International Conference on Image Processing (ICIP), 3507–3511. DOI: 10.1109/ICIP.2019.8803516.
  40. [40] F. Durand and J. Dorsey. “Fast bilateral filtering for the display of high-dynamic-range images”. In: 2002, 29th annual conference on Computer graphics and interactive techniques. Association for Computing Machinery, 257–266. DOI: 10.1145/566570.566574.
  41. [41] M. Trentacoste, R. Mantiuk, W. Heidrich, and F. Dufrot. “Unsharp masking, countershading and halos: enhancements or artifacts?” In: 2012, Computer Graphics Forum. 31. Wiley Online Library, 555–564. DOI: 10.1111/j.1467-8659.2012.03056.x.
  42. [42] Z. Farbman, R. Fattal, D. Lischinski, and R. Szeliski, (2008) “Edge-preserving decompositions for multi-scale tone and detail manipulation" ACM Transaction on Graphics 27(3): 1–10. DOI: 10.1145/1360612.1360666.
  43. [43] J. Kuang, G. M. Johnson, and M. D. Fairchild, (2007) “iCAM06: A refined image appearance model for HDR image rendering" Journal of Visual Communication and Image Representation 18(5): 406–414. DOI: 10.1016/j.jvcir.2007.06.003.
  44. [44] I. R. Khan, T. A. Alotaibi, A. Siddiq, and F. Bourennani, (2022) “Evaluating Quantitative Metrics of ToneMapped Images" IEEE Transactions on Image Processing 31: 1751–1760. DOI: 10.1109/TIP.2022.3146640.