Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Peng Zhang , Man Zhao

College of communications and Electronics Engineering, Qiqihar University, Qiqihar, HeiLongjiang, 161006, China


 

Received: April 15, 2023
Accepted: May 25, 2023
Publication Date: July 29, 2023

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202403_27(3).0003  


The smart city idea has gained much popularity in recent years because of its potential to enhance urban people’s quality of life. The idea encompasses a wide range of fields, including smart community, smart transportation, and smart healthcare. For intelligent decision-making, most smart city services, particularly those in the smart healthcare field, demand analyzing, processing, and real-time sharing of big healthcare data. The current state of the healthcare industry requires the supply of healthcare products and services, increasing its viability for everyone involved. This paper presents a novel healthcare framework based on clustering sensor nodes, where the physical body is separated into three areas: the bottom, top, and intermediate body regions. The regions are clustered using an enhanced LEACH algorithm. Cluster heads are selected using the Gravitational Search Algorithm (GSA). The MATLAB environment is used to evaluate the proposed framework by comparing it to other approaches. Our framework outperforms previous methods in terms of energy consumption and throughput by 20% and 30%, respectively.


Keywords: Internet of things; Healthcare; Gravitational Search Algorithm; Clustering; Optimization


  1. [1] M. Javaid, A. Haleem, R. P. Singh, S. Rab, R. Suman, and I. H. Khan, (2022) “Evolutionary trends in progressive cloud computing based healthcare: Ideas, enablers, and barriers" International Journal of Cognitive Computing in Engineering 3: 124–135. DOI: 10.1016/j.ijcce.2022.06.001.
  2. [2] F. Kamalov, B. Pourghebleh, M. Gheisari, Y. Liu, and S. Moussa, (2023) “Internet of medical things privacy and security: Challenges, solutions, and future trends from a new perspective" Sustainability 15(4): 3317. DOI: 10.3390/su15043317.
  3. [3] S. Meisami, M. Beheshti-Atashgah, and M. R. Aref, (2021) “Using blockchain to achieve decentralized privacy in IoT healthcare" arXiv preprint arXiv:2109.14812:
  4. [4] S. Alam, M. Shuaib, S. Ahmad, D. N. K. Jayakody, A. Muthanna, S. Bharany, and I. A. Elgendy, (2022) “Blockchain-Based Solutions Supporting Reliable Healthcare for Fog Computing and Internet of Medical Things (IoMT) Integration" Sustainability 14(22): 15312. DOI: 10.3390/su142215312.
  5. [5] Z. A. Shaikh, A. A. Khan, L. Teng, A. A. Wagan, and A. A. Laghari, (2022) “BIoMT modular infrastructure: The recent challenges, issues, and limitations in blockchain hyperledger-enabled e-healthcare application" Wireless Communications and Mobile Computing 2022: 1–14. DOI: 10.1155/2022/3813841.
  6. [6] A. Mehbodniya, J. L. Webber, R. Rani, S. S. Ahmad, I. Wattar, L. Ali, and S. J. Nuagah, (2022) “Energyaware routing protocol with fuzzy logic in industrial internet of things with blockchain technology" Wireless Communications and Mobile Computing 2022: DOI: 10.1155/2022/7665931.
  7. [7] A. Morteza, M. Ilbeigi, and J. Schwed. “A blockchain information management framework for construction safety”. In: Computing in Civil Engineering 2021. 2021, 342–349. DOI: 10.1061/9780784483893.043.
  8. [8] R. Singh, A. Mehbodniya, J. L. Webber, P. Dadheech, G. Pavithra, M. S. Alzaidi, and R. Akwafo, (2022) “Analysis of network slicing for management of 5G networks using machine learning techniques" Wireless Communications and Mobile Computing 2022: DOI: 10.1155/2022/9169568.
  9. [9] V. Hayyolalam, B. Pourghebleh, M. R. Chehrehzad, and A. A. Pourhaji Kazem, (2022) “Single-objective service composition methods in cloud manufacturing systems: Recent techniques, classification, and future trends" Concurrency and Computation: Practice and Experience 34(5): e6698. DOI: 10.1002/cpe.6698.
  10. [10] P. S. Priya, P. Malik, A. Mehbodniya, V. Chaudhary, A. Sharma, and S. Ray. “The Relationship between Cloud Computing and Deep Learning towards Organizational Commitment”. In: 2022 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM). 2. IEEE, 2022, 21–26.
  11. [11] R. N. Jacob. “Non-performing Asset Analysis Using Machine Learning”. In: ICT Systems and Sustainability: Proceedings of ICT4SD 2020, Volume 1. Springer, 2021, 11–18. DOI: 10.1007/978-981-15-8289-9_2.
  12. [12] C. Han and X. Fu, (2023) “Challenge and Opportunity: Deep Learning-Based Stock Price Prediction by Using Bi-Directional LSTM Model" Frontiers in Business, Economics and Management 8(2): 51–54. DOI: 10.54097/fbem.v8i2.6616.
  13. [13] M. Sadi, Y. He, Y. Li, M. Alam, S. Kundu, S. Ghosh, J. Bahrami, and N. Karimi. “Special Session: On the Reliability of Conventional and Quantum Neural Network Hardware”. In: 2022 IEEE 40th VLSI Test Symposium (VTS). IEEE, 2022, 1–12. DOI: 10.1109/VTS52500.2021.9794194.
  14. [14] B. Pourghebleh, N. Hekmati, Z. Davoudnia, and M. Sadeghi, (2022) “A roadmap towards energy-efficient data fusion methods in the Internet of Things" Concurrency and Computation: Practice and Experience 34(15): e6959. DOI: 10.1002/cpe.6959.
  15. [15] M. Mohseni, F. Amirghafouri, and B. Pourghebleh, (2023) “CEDAR: A cluster-based energy-aware data aggregation routing protocol in the internet of things using capuchin search algorithm and fuzzy logic" Peer-to-Peer Networking and Applications 16(1): 189–209. DOI: 10.1007/s12083-022-01388-3.
  16. [16] H. Liu, M. Barekatain, A. Roy, S. Liu, Y. Cao, Y. Tang, A. Shkel, and E. S. Kim, (2023) “MEMS piezoelectric resonant microphone array for lung sound classification" Journal of Micromechanics and Microengineering 33(4): 44003. DOI: 10.1088/1361-6439/acbfc3/meta.
  17. [17] C. A. Kieslich, F. Alimirzaei, H. Song, M. Do, and P. Hall. “Data-driven prediction of antiviral peptides based on periodicities of amino acid properties”. In: Computer Aided Chemical Engineering. 50. Elsevier, 2021, 2019–2024. DOI: 10.1016/B978-0-323-88506-5.50312-0.
  18. [18] B. Pourghebleh, V. Hayyolalam, and A. Aghaei Anvigh, (2020) “Service discovery in the Internet of Things: review of current trends and research challenges" Wireless Networks 26(7): 5371–5391.
  19. [19] B. Pourghebleh and N. J. Navimipour, (2017) “Data aggregation mechanisms in the Internet of things: A systematic review of the literature and recommendations for future research" Journal of Network and Computer Applications 97: 23–34. DOI: 10.1016/j.jnca.2017.08. 006.
  20. [20] M. Nazoktabar, M. ZAHEDINEJAD, P. Heydari, and A. R. Asgharpour, (2014) “Fabrication and Optical Characterization of Silicon Nanostructure Arrays by Laser Interference Lithography and Metal-Assisted Chemical Etching":
  21. [21] A. Abuelkhail, U. Baroudi, M. Raad, and T. Sheltami, (2021) “Internet of things for healthcare monitoring applications based on RFID clustering scheme" Wireless Networks 27: 747–763.
  22. [22] A. A. Laghari, H. He, A. Khan, R. A. Laghari, S. Yin, and J. Wang, (2022) “Crowdsourcing platform for QoE evaluation for cloud multimedia services" Computer Science and Information Systems (00): 38.
  23. [23] Z. Yang, B. Liang, and W. Ji, (2021) “An intelligent end–edge–cloud architecture for visual IoT-assisted Healthcare systems" IEEE Internet of Things Journal 8(23): 16779–16786. DOI: 10.1109/JIOT.2021.3052778.
  24. [24] K. Liu, F. Ke, X. Huang, R. Yu, F. Lin, Y. Wu, and D. W. K. Ng, (2021) “DeepBAN: a temporal convolutionbased communication framework for dynamic WBANs" IEEE Transactions on Communications 69(10): 6675–6690. DOI: 10.1109/TCOMM.2021.3094581.
  25. [25] L. Rajabion, A. A. Shaltooki, M. Taghikhah, A. Ghasemi, and A. Badfar, (2019) “Healthcare big data processing mechanisms: The role of cloud computing" International Journal of Information Management 49: 271–289. DOI: 10.1016/j.ijinfomgt.2019.05.017.
  26. [26] M. B. Alazzam, F. Alassery, and A. Almulihi, (2021) “A novel smart healthcare monitoring system using machine learning and the Internet of Things" Wireless Communications and Mobile Computing 2021: 1–7. DOI: 10.1155/2021/5078799.
  27. [27] H. Kosarirad, M. Ghasempour Nejati, A. Saffari, M. Khishe, and M. Mohammadi, (2022) “Feature Selection and Training Multilayer Perceptron Neural Networks Using Grasshopper Optimization Algorithm for Design Optimal Classifier of Big Data Sonar" Journal of Sensors 2022: DOI: 10.1155/2022/9620555.
  28. [28] S. R. Moosavi, T. N. Gia, E. Nigussie, A. M. Rahmani, S. Virtanen, H. Tenhunen, and J. Isoaho, (2016) “Endto-end security scheme for mobility enabled healthcare Internet of Things" Future Generation Computer Systems 64: 108–124. DOI: 10.1016/j.future.2016.02.020.
  29. [29] G. Manogaran, R. Varatharajan, D. Lopez, P. M. Kumar, R. Sundarasekar, and C. Thota, (2018) “A new architecture of Internet of Things and big data ecosystem for secured smart healthcare monitoring and alerting system" Future Generation Computer Systems 82: 375–387. DOI: 10.1016/j.future.2017.10.045.
  30. [30] S. Pal, M. Hitchens, V. Varadharajan, and T. Rabehaja, (2019) “Policy-based access control for constrained healthcare resources in the context of the Internet of Things" Journal of Network and Computer Applications 139: 57–74. DOI: 10.1016/j.jnca.2019.04.013.
  31. [31] M. Bhatia, S. Kaur, S. K. Sood, and V. Behal, (2020) “Internet of things-inspired healthcare system for urinebased diabetes prediction" Artificial Intelligence in Medicine 107: 101913. DOI: 10.1016/j.artmed.2020. 101913.
  32. [32] S. Zeadally and O. Bello, (2021) “Harnessing the power of Internet of Things based connectivity to improve healthcare" Internet of Things 14: 100074. DOI: 10.1016/j.iot.2019.100074.
  33. [33] T. P. Jacob, A. Pravin, and R. R. Kumar, (2022) “A secure IoT based healthcare framework using modified RSA algorithm using an artificial hummingbird based CNN" Transactions on Emerging Telecommunications Technologies: e4622. DOI: 10.1002/ett.4622.
  34. [34] K. Van Dam, S. Pitchers, and M. Barnard. “Body area networks: Towards a wearable future”. In: Proc. WWRF kick off meeting, Munich, Germany. 6. 7. 2001.
  35. [35] Y. Peng, (2017) “Motorcycle helmet laws prevent injury and save lives: recommendation of the Community Preventive Services Task Force" American journal of preventive medicine 52(6): 817–819. DOI: 10.1016/j.amepre.2016.12.023.
  36. [36] N. Bradai, L. C. Fourati, and L. Kamoun, (2015) “WBAN data scheduling and aggregation under WBAN/WLAN healthcare network" Ad Hoc Networks 25: 251–262. DOI: 10.1016/j.adhoc.2014.10.017.
  37. [37] M. Tewari and K. S. Vaisla. “Performance study of SEP and DEC hierarchical clustering algorithm for heterogeneous WSN”. In: 2014 International Conference on Computational Intelligence and Communication Networks. IEEE, 2014, 385–389. DOI: 10.1109/CICN. 2014.92.
  38. [38] S. Verma, N. Sood, and A. K. Sharma, (2019) “Genetic algorithm-based optimized cluster head selection for single and multiple data sinks in heterogeneous wireless sensor network" Applied Soft Computing 85: 105788. DOI: 10.1016/j.asoc.2019.105788.
  39. [39] A. S. Raj and M. Chinnadurai, (2020) “Energy efficient routing algorithm in wireless body area networks for smart wearable patches" Computer Communications 153: 85–94. DOI: 10.1016/j.comcom.2020.01.069.
  40. [40] Z. Ullah, I. Ahmed, K. Razzaq, M. K. Naseer, and N. Ahmed, (2019) “DSCB: Dual sink approach using clustering in body area network" Peer-to-Peer Networking and Applications 12: 357–370. DOI: 10.1007/s12083- 017-0587-z.


    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.