- [1] J. M. Arms, P. D. Candidate, and C. Musicology, (2017) “Presented at the Thirteenth Annual Graduate Student Research Symposium":
- [2] M. Perlman and C. L. Krumhansl, (1996) “An Experimental Study of Internal Interval Standards in Javanese and Western Musicians" Music Perception 14: 95–116. DOI: 10.2307/40285714.
- [3] A. M. Syarif, K. Hastuti, and P. N. Andono, (2022) “Traditional Javanese Membranophone Percussion Play Formalization for Virtual Orchestra Automation" Proceedings - 2022 IEEE International Conference on Cybernetics and Computational Intelligence, CyberneticsCom 2022: 381–386. DOI: 10.1109/CYBERNETICSCOM55287.2022.9865292.
- [4] A. Wintarti, D. Juniati, and I. N. Wulandari, (2018) “Classification of Gamelan Tones Based on Fractal Analysis" IOP Conference Series: Materials Science and Engineering 288: 012022. DOI: 10.1088/1757-899X/288/1/012022.
- [5] D. K. Sari, D. P. Wulandari, and Y. K. Suprapto, (2019) “Training Performance of Recurrent Neural Network using RTRL and BPTT for Gamelan Onset Detection" Journal of Physics: Conference Series 1201: 012046. DOI: 10.1088/1742-6596/1201/1/012046.
- [6] J. Mantik, I. A. Mirah, C. Dewi, I. Gede, A. Gunadi, and G. Indrawan, (2022) “Gamelan Rindik Classification Based On Mood Using K-Nearest Neigbor Method" Jurnal Mantik 6: 1693–1702. DOI: 10.35335/MANTIK.V6I2.2592.
- [7] A. Tjahyanto, Y. K. Suprapto, and D. P. Wulandari, (2013) “Spectral-based Features Ranking for Gamelan Instruments Identification using Filter Techniques" TELKOMNIKA (Telecommunication Computing Electronics and Control) 11: 95–106. DOI: 10.12928/TELKOMNIKA.V11I1.895.
- [8] A. Tjahyanto, D. P. Wulandari, Y. K. Suprapto, and M. H. Purnomo, (2015) “Gamelan instrument sound recognition using spectral and facial features of the first harmonic frequency" Acoustical Science and Technology 36: 12–23. DOI: 10.1250/AST.36.12.
- [9] Y. Ma, Y. Hao, M. Chen, J. Chen, P. Lu, and A. Koa˘ir, (2019) “Audio-visual emotion fusion (AVEF): A deep efficient weighted approach" Information Fusion 46: 184–192. DOI: 10.1016/J.INFFUS.2018.06.003.
- [10] A. Bansal and N. K. Garg, (2022) “Environmental Sound Classification: A descriptive review of the literature" Intelligent Systems with Applications 16: 200115. DOI: 10.1016/J.ISWA.2022.200115.
- [11] M. Bansal, M. Kumar, M. Sachdeva, and A. Mittal, (2021) “Transfer learning for image classification using VGG19: Caltech-101 image data set" Journal of Ambient Intelligence and Humanized Computing 14: 3609–3620. DOI: 10.1007/S12652-021-03488-Z/TABLES/8.
- [12] P. N. Andono, G. F. Shidik, D. P. Prabowo, D. Pergiwati, and R. A. Pramunendar, “Bird Voice Classification Based on Combination Feature Extraction and Reduction Dimension with the K-Nearest Neighbor" International Journal of Intelligent Engineering and Systems 15: 2022. DOI: 10.22266/ijies2022.0228.24.
- [13] S. S. Chakraborty and R. Parekh, (2018) “Improved musical instrument classification using cepstral coefficients and neural networks" Methodologies and Application Issues of Contemporary Computing Framework: 123–138. DOI: 10.1007/978-981-13-2345-4_10/COVER.
- [14] T. Tran and J. Lundgren, (2020) “Drill fault diagnosis based on the scalogram and MEL spectrogram of sound signals using artificial intelligence" IEEE Access 8: 203655–203666. DOI: 10.1109/ACCESS.2020.3036769.
- [15] K. Nugroho, E. Noersasongko, Purwanto, Muljono, and D. R. I. M. Setiadi, (2022) “Enhanced Indonesian Ethnic Speaker Recognition using Data Augmentation Deep Neural Network" Journal of King Saud University - Computer and Information Sciences 34: 4375–4384. DOI: 10.1016/J.JKSUCI.2021.04.002.
- [16] S. Prabavathy, V. Rathikarani, and P. Dhanalakshmi, (2022) “Musical Instrument Sound Classification Using GoogleNet with SVM and kNN Model" Lecture Notes in Networks and Systems 300 LNNS: 230–240. DOI: 10.1007/978-3-030-84760-9_21/COVER.
- [17] C. Jeyalakshmi, B. Murugeshwari, and M. Karthick, (2019) “HMM and K-NN based automatic musical instrument recognition" Proceedings of the International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud), I-SMAC 2018: 350–355. DOI: 10.1109/I-SMAC.2018.8653725.
- [18] S. Prabavathy, V. Rathikarani, and P. Dhanalakshmi, (2020) “Musical Instruments Classification using PreTrained Model":
- [19] E. Messner, M. Fediuk, P. Swatek, S. Scheidl, F. M. Smolle-Jüttner, H. Olschewski, and F. Pernkopf, (2020) “Multi-channel lung sound classification with convolutional recurrent neural networks" Computers in Biology and Medicine 122: 103831. DOI: 10.1016/J.COMPBIOMED.2020.103831.
- [20] T. Pronk, D. Molenaar, R. W. Wiers, and J. Murre, (2022) “Methods to split cognitive task data for estimating split-half reliability: A comprehensive review and systematic assessment" Psychonomic Bulletin and Review 29: 44–54. DOI: 10.3758/S13423-021-01948-3/FIGURES/1.
- [21] A. K. Aggarwal, “Learning Texture Features from GLCM for Classification of Brain Tumor MRI Images using Random Forest Classifier": DOI: 10.37394/232014.2022.18.8.
- [22] S. Das and U. R. Jena, (2017) “Texture classification using combination of LBP and GLRLM features along with KNN and multiclass SVM classification" 2nd International Conference on Communication, Control and Intelligent Systems, CCIS 2016: 115–119. DOI: 10.1109/CCINTELS.2016.7878212.
- [23] H. Xu, W. Zeng, X. Zeng, G. Y. .-. I. transactions on, and undefined 2018, “An evolutionary algorithm based on Minkowski distance for many-objective optimization" ieeexplore.ieee.org:
- [24] M. Mateen, J. Wen, Nasrullah, S. Song, and Z. Huang, (2018) “Fundus Image Classification Using VGG-19 Architecture with PCA and SVD" Symmetry 2019, Vol. 11, Page 1 11: 1. DOI: 10.3390/SYM11010001.
- [25] , (2022) “Chest X-ray Images Analysis with Deep Convolutional Neural Networks (CNN) for COVID-19 Detection" EAI/Springer Innovations in Communication and Computing: 403–423. DOI: 10.1007/978-3-030-72752-9_21/COVER.
- [26] S. Chauhan, M. Singh, and A. K. Aggarwal, (2021) “Data Science and Data Analytics: Artificial Intelligence and Machine Learning Integrated Based Approach" Data Science and Data Analytics: 3–18. DOI: 10.1201/9781003111290-1-2.
- [27] K. Pal and B. V. Patel, (2020) “Data Classification with k-fold Cross Validation and Holdout Accuracy Estimation Methods with 5 Different Machine Learning Techniques" Proceedings of the 4th International Conference on Computing Methodologies and Communication, ICCMC 2020: 83–87. DOI: 10.1109/ICCMC48092.2020.ICCMC-00016.
- [28] S. Yadav and S. Shukla, (2016) “Analysis of k-Fold Cross-Validation over Hold-Out Validation on Colossal Datasets for Quality Classification" Proceedings - 6th International Advanced Computing Conference, IACC 2016: 78–83. DOI: 10.1109/IACC.2016.25.
- [29] X. Deng, Q. Liu, Y. Deng, and S. Mahadevan, (2016) “An improved method to construct basic probability assignment based on the confusion matrix for classification problem" Information Sciences 340-341: 250–261. DOI: 10.1016/J.INS.2016.01.033.
- [30] R. O. Alabi, M. Elmusrati, I. Sawazaki-Calone, L. P. Kowalski, C. Haglund, R. D. Coletta, A. A. Mäkitie, T. Salo, A. Almangush, and I. Leivo, (2020) “Comparison of supervised machine learning classification techniques in prediction of locoregional recurrences in early oral tongue cancer" International Journal of Medical Informatics 136: 104068. DOI: 10 . 1016/J.IJMEDINF.2019.104068.
- [31] H. Salem, K. R. Negm, M. Y. Shams, and O. M. Elzeki, (2022) “Recognition of Ocular Disease Based Optimized VGG-Net Models" Studies in Computational Intelligence 1005: 93–111. DOI: 10.1007/978-3-030-91103-4_6/COVER.
- [32] F. Li, H. Tang, S. Shang, K. Mathiak, and F. Cong, (2020) “Classification of Heart Sounds Using Convolutional Neural Network" Applied Sciences 2020, Vol. 10, Page 3956 10: 3956. DOI: 10.3390/APP10113956.