Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Yuejia Lin, Zhao Li, Chenxun Yuan, Yi LiuThis email address is being protected from spambots. You need JavaScript enabled to view it. 

School of Software, Shandong University, Jinan 250101, China


 

Received: March 23, 2023
Accepted: May 9, 2023
Publication Date: September 6, 2023

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202404_27(4).0002  


In recent years, superpixel segmentation has been widely used in image processing tasks as a preprocessing step. Superpixel segmentation aims to group pixels into homogeneous regions while maintaining edges. This paper proposes a superpixel segmentation algorithm based on boundary preservation. In the algorithm, the side window filtering is first used to smooth the image texture area, so that the superpixel shape generated at the texture is regular. Different from other superpixel clustering algorithms, the algorithm in this paper uses a new distance measurement function for distance measurement, which can assign different weights to its color distance items and spatial distance items according to different pixels, so that the superpixel fit in the image boundary area. The boundary is regular in the flat area. The distance measurement function also takes into account the pixel information of the linear path from the pixel to the cluster center, and avoids the category error division caused by only the local information of the pixel for clustering. Finally, this paper designs a new cluster center update strategy, which uses only the weighted average of some reliable pixels in the superpixel as the new cluster center, thereby reducing the update of the cluster center of pixels that are not very similar to the cluster center. The interference makes the cluster center update more accurate. Experimental results show that our algorithm can get better results in visual effects and BR,UE,ASA indicators compared with existing algorithms.


Keywords: Superpixel segmentation; Clustering; superpixels; Image boundaries; Image segmentation


  1. [1] X. Ren and J. Malik. “Learning a classification model for segmentation”. In: Computer Vision, IEEE International Conference on. 2. IEEE Computer Society. 2003, 10–10. DOI: 10.1109/ICCV.2003.1238308.
  2. [2] B. Peng, L. Zhang, and D. Zhang, (2011) “Automatic image segmentation by dynamic region merging" IEEE Transactions on image processing 20(12): 3592–3605. DOI: 10.1109/TIP.2011.2157512.
  3. [3] Y. Xu, X. Gao, C. Zhang, J. Tan, and X. Li, (2022) “High quality superpixel generation through regional decomposition" IEEE Transactions on Circuits and Systems for Video Technology: DOI: 10.1109/TCSVT.2022.3216303.
  4. [4] X. Ma, X. Li, Y. Zhou, and C. Zhang, (2021) “Image smoothing based on global sparsity decomposition and a variable parameter" Computational Visual Media 7: 483–497. DOI: 10.1007/s41095-021-0220-1.
  5. [5] L. Wang, Y. Shoulin, H. Alyami, A. A. Laghari, M. Rashid, J. Almotiri, H. J. Alyamani, and F. Alturise. A novel deep learning-based single shot multibox detector model for object detection in optical remote sensing images. 2022. DOI: 10.1002/gdj3.162.
  6. [6] S. Karim, Y. Zhang, S. Yin, A. A. Laghari, and A. A. Brohi, (2019) “Impact of compressed and down-scaled training images on vehicle detection in remote sensing imagery" Multimedia Tools and Applications 78: 32565–32583. DOI: 10.1007/s11042-019-08033-x.
  7. [7] F. Perazzi, P. Krähenbühl, Y. Pritch, and A. Hornung. “Saliency filters: Contrast based filtering for salient region detection”. In: 2012 IEEE conference on computer vision and pattern recognition. IEEE. 2012, 733– 740. DOI: 10.1109/CVPR.2012.6247743.
  8. [8] X. Pan, Y. Zhou, F. Li, and C. Zhang, (2016) “Superpixels of RGB-D images for indoor scenes based on weighted geodesic driven metric" IEEE transactions on visualization and computer graphics 23(10): 2342–2356. DOI: 10.1109/TVCG.2016.2621763.
  9. [9] A. A. Laghari, S. Yin, et al., (2022) “How to Collect and Interpret Medical Pictures Captured in Highly Challenging Environments that Range from Nanoscale to Hyperspectral Imaging." Current Medical Imaging: DOI: 10.2174/1573405619666221228094228.
  10. [10] J. Cheng, J. Liu, Y. Xu, F. Yin, D. W. K. Wong, N.-M. Tan, D. Tao, C.-Y. Cheng, T. Aung, and T. Y. Wong, (2013) “Superpixel classification based optic disc and optic cup segmentation for glaucoma screening" IEEE transactions on medical imaging 32(6): 1019–1032. DOI: 10.1109/TMI.2013.2247770.
  11. [11] B. Liu, H. Hu, H. Wang, K. Wang, X. Liu, and W. Yu, (2012) “Superpixel-based classification with an adaptive number of classes for polarimetric SAR images" IEEE Transactions on Geoscience and Remote Sensing 51(2): 907–924. DOI: 10.1109/TGRS.2012.2203358.
  12. [12] B. Alexe, T. Deselaers, and V. Ferrari, (2012) “Measuring the objectness of image windows" IEEE transactions on pattern analysis and machine intelligence 34(11): 2189–2202. DOI: 10.1109/TPAMI.2012.28.
  13. [13] A. Bódis-Szomorú, H. Riemenschneider, and L. Van Gool. “Superpixel meshes for fast edge-preserving surface reconstruction”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015, 2011–2020.
  14. [14] D. Hoiem, A. A. Efros, and M. Hebert. “Automatic photo pop-up”. In: ACM SIGGRAPH 2005 Papers. 2005, 577–584. DOI: 10.1145/1186822.1073232.
  15. [15] J. Lim and B. Han. “Generalized background subtraction using superpixels with label integrated motion estimation”. In: Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13. Springer. 2014, 173–187. DOI: 10.1007/978-3-319-10602-1_12.
  16. [16] J. Shi and J. Malik, (2000) “Normalized cuts and image segmentation" IEEE Transactions on pattern analysis and machine intelligence 22(8): 888–905. DOI: 10.1109/34.868688.
  17. [17] M.-Y. Liu, O. Tuzel, S. Ramalingam, and R. Chellappa. “Entropy rate superpixel segmentation”. In: CVPR 2011. IEEE. 2011, 2097–2104. DOI: 10.1109/CVPR.2011.5995323.
  18. [18] J. Shen, Y. Du, W. Wang, and X. Li, (2014) “Lazy random walks for superpixel segmentation" IEEE Transactions on Image Processing 23(4): 1451–1462. DOI: 10.1109/TIP.2014.2302892.
  19. [19] Y.-J. Gong and Y. Zhou, (2017) “Differential evolutionary superpixel segmentation" IEEE Transactions on Image Processing 27(3): 1390–1404. DOI: 10.1109/TIP.2017.2778569.
  20. [20] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk, (2012) “SLIC superpixels compared to state-of-the-art superpixel methods" IEEE transactions on pattern analysis and machine intelligence 34(11): 2274–2282. DOI: 10.1109/TPAMI.2012.120.
  21. [21] J. Shen, X. Hao, Z. Liang, Y. Liu, W. Wang, and L. Shao, (2016) “Real-time superpixel segmentation by DBSCAN clustering algorithm" IEEE transactions on image processing 25(12): 5933–5942. DOI: 10.1109/TIP.2016.2616302.
  22. [22] Z. Ban, J. Liu, and L. Cao, (2018) “Superpixel segmentation using Gaussian mixture model" IEEE Transactions on Image Processing 27(8): 4105–4117. DOI: 10.1109/TIP.2018.2836306.
  23. [23] Y. Zhang, X. Li, X. Gao, and C. Zhang, (2016) “A simple algorithm of superpixel segmentation with boundary constraint" IEEE Transactions on Circuits and Systems for Video Technology 27(7): 1502–1514. DOI: 10.1109/TCSVT.2016.2539839.
  24. [24] R. Giraud, V.-T. Ta, and N. Papadakis, (2018) “Robust superpixels using color and contour features along linear path" Computer Vision and Image Understanding 170: 1–13. DOI: 10.1016/j.cviu.2018.01.006.
  25. [25] H. Yin, Y. Gong, and G. Qiu. “Side window filtering”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019, 8758–8766.
  26. [26] A. Levinshtein, A. Stere, K. N. Kutulakos, D. J. Fleet, S. J. Dickinson, and K. Siddiqi, (2009) “Turbopixels: Fast superpixels using geometric flows" IEEE transactions on pattern analysis and machine intelligence 31(12): 2290–2297. DOI: 10.1109/TPAMI.2009.96.
  27. [27] Z. Li and J. Chen. “Superpixel segmentation using linear spectral clustering”. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015, 1356–1363.
  28. [28] Z. Li and J. Chen. “Superpixel segmentation using linear spectral clustering”. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015, 1356–1363.
  29. [29] D. Martin, C. Fowlkes, D. Tal, and J. Malik. “A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics”. In: Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001. 2. IEEE. 2001, 416–423. DOI: 10.1109/ICCV.2001.937655.