- [1] X. Ren and J. Malik. “Learning a classification model for segmentation”. In: Computer Vision, IEEE International Conference on. 2. IEEE Computer Society. 2003, 10–10. DOI: 10.1109/ICCV.2003.1238308.
- [2] B. Peng, L. Zhang, and D. Zhang, (2011) “Automatic image segmentation by dynamic region merging" IEEE Transactions on image processing 20(12): 3592–3605. DOI: 10.1109/TIP.2011.2157512.
- [3] Y. Xu, X. Gao, C. Zhang, J. Tan, and X. Li, (2022) “High quality superpixel generation through regional decomposition" IEEE Transactions on Circuits and Systems for Video Technology: DOI: 10.1109/TCSVT.2022.3216303.
- [4] X. Ma, X. Li, Y. Zhou, and C. Zhang, (2021) “Image smoothing based on global sparsity decomposition and a variable parameter" Computational Visual Media 7: 483–497. DOI: 10.1007/s41095-021-0220-1.
- [5] L. Wang, Y. Shoulin, H. Alyami, A. A. Laghari, M. Rashid, J. Almotiri, H. J. Alyamani, and F. Alturise. A novel deep learning-based single shot multibox detector model for object detection in optical remote sensing images. 2022. DOI: 10.1002/gdj3.162.
- [6] S. Karim, Y. Zhang, S. Yin, A. A. Laghari, and A. A. Brohi, (2019) “Impact of compressed and down-scaled training images on vehicle detection in remote sensing imagery" Multimedia Tools and Applications 78: 32565–32583. DOI: 10.1007/s11042-019-08033-x.
- [7] F. Perazzi, P. Krähenbühl, Y. Pritch, and A. Hornung. “Saliency filters: Contrast based filtering for salient region detection”. In: 2012 IEEE conference on computer vision and pattern recognition. IEEE. 2012, 733– 740. DOI: 10.1109/CVPR.2012.6247743.
- [8] X. Pan, Y. Zhou, F. Li, and C. Zhang, (2016) “Superpixels of RGB-D images for indoor scenes based on weighted geodesic driven metric" IEEE transactions on visualization and computer graphics 23(10): 2342–2356. DOI: 10.1109/TVCG.2016.2621763.
- [9] A. A. Laghari, S. Yin, et al., (2022) “How to Collect and Interpret Medical Pictures Captured in Highly Challenging Environments that Range from Nanoscale to Hyperspectral Imaging." Current Medical Imaging: DOI: 10.2174/1573405619666221228094228.
- [10] J. Cheng, J. Liu, Y. Xu, F. Yin, D. W. K. Wong, N.-M. Tan, D. Tao, C.-Y. Cheng, T. Aung, and T. Y. Wong, (2013) “Superpixel classification based optic disc and optic cup segmentation for glaucoma screening" IEEE transactions on medical imaging 32(6): 1019–1032. DOI: 10.1109/TMI.2013.2247770.
- [11] B. Liu, H. Hu, H. Wang, K. Wang, X. Liu, and W. Yu, (2012) “Superpixel-based classification with an adaptive number of classes for polarimetric SAR images" IEEE Transactions on Geoscience and Remote Sensing 51(2): 907–924. DOI: 10.1109/TGRS.2012.2203358.
- [12] B. Alexe, T. Deselaers, and V. Ferrari, (2012) “Measuring the objectness of image windows" IEEE transactions on pattern analysis and machine intelligence 34(11): 2189–2202. DOI: 10.1109/TPAMI.2012.28.
- [13] A. Bódis-Szomorú, H. Riemenschneider, and L. Van Gool. “Superpixel meshes for fast edge-preserving surface reconstruction”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015, 2011–2020.
- [14] D. Hoiem, A. A. Efros, and M. Hebert. “Automatic photo pop-up”. In: ACM SIGGRAPH 2005 Papers. 2005, 577–584. DOI: 10.1145/1186822.1073232.
- [15] J. Lim and B. Han. “Generalized background subtraction using superpixels with label integrated motion estimation”. In: Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13. Springer. 2014, 173–187. DOI: 10.1007/978-3-319-10602-1_12.
- [16] J. Shi and J. Malik, (2000) “Normalized cuts and image segmentation" IEEE Transactions on pattern analysis and machine intelligence 22(8): 888–905. DOI: 10.1109/34.868688.
- [17] M.-Y. Liu, O. Tuzel, S. Ramalingam, and R. Chellappa. “Entropy rate superpixel segmentation”. In: CVPR 2011. IEEE. 2011, 2097–2104. DOI: 10.1109/CVPR.2011.5995323.
- [18] J. Shen, Y. Du, W. Wang, and X. Li, (2014) “Lazy random walks for superpixel segmentation" IEEE Transactions on Image Processing 23(4): 1451–1462. DOI: 10.1109/TIP.2014.2302892.
- [19] Y.-J. Gong and Y. Zhou, (2017) “Differential evolutionary superpixel segmentation" IEEE Transactions on Image Processing 27(3): 1390–1404. DOI: 10.1109/TIP.2017.2778569.
- [20] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk, (2012) “SLIC superpixels compared to state-of-the-art superpixel methods" IEEE transactions on pattern analysis and machine intelligence 34(11): 2274–2282. DOI: 10.1109/TPAMI.2012.120.
- [21] J. Shen, X. Hao, Z. Liang, Y. Liu, W. Wang, and L. Shao, (2016) “Real-time superpixel segmentation by DBSCAN clustering algorithm" IEEE transactions on image processing 25(12): 5933–5942. DOI: 10.1109/TIP.2016.2616302.
- [22] Z. Ban, J. Liu, and L. Cao, (2018) “Superpixel segmentation using Gaussian mixture model" IEEE Transactions on Image Processing 27(8): 4105–4117. DOI: 10.1109/TIP.2018.2836306.
- [23] Y. Zhang, X. Li, X. Gao, and C. Zhang, (2016) “A simple algorithm of superpixel segmentation with boundary constraint" IEEE Transactions on Circuits and Systems for Video Technology 27(7): 1502–1514. DOI: 10.1109/TCSVT.2016.2539839.
- [24] R. Giraud, V.-T. Ta, and N. Papadakis, (2018) “Robust superpixels using color and contour features along linear path" Computer Vision and Image Understanding 170: 1–13. DOI: 10.1016/j.cviu.2018.01.006.
- [25] H. Yin, Y. Gong, and G. Qiu. “Side window filtering”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019, 8758–8766.
- [26] A. Levinshtein, A. Stere, K. N. Kutulakos, D. J. Fleet, S. J. Dickinson, and K. Siddiqi, (2009) “Turbopixels: Fast superpixels using geometric flows" IEEE transactions on pattern analysis and machine intelligence 31(12): 2290–2297. DOI: 10.1109/TPAMI.2009.96.
- [27] Z. Li and J. Chen. “Superpixel segmentation using linear spectral clustering”. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015, 1356–1363.
- [28] Z. Li and J. Chen. “Superpixel segmentation using linear spectral clustering”. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015, 1356–1363.
- [29] D. Martin, C. Fowlkes, D. Tal, and J. Malik. “A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics”. In: Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001. 2. IEEE. 2001, 416–423. DOI: 10.1109/ICCV.2001.937655.