Haifang DongThis email address is being protected from spambots. You need JavaScript enabled to view it.
School of Information Engineering, Zhengzhou Urban Construction Vocational College, Zhengzhou, 450000, China
Received: July 11, 2023 Accepted: August 30, 2023 Publication Date: October 11, 2023
Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.
We theoretically propose and numerically analyze a small-size Wilkinson power divider (WPD) based on a novel ring-shaped resonator that can create a wide bandwidth in the passband of the power divider. The WPD can attenuate 9 disturbing harmonics while the maximum insertion loss at the working frequency of 2.6GHz is about −3.08 dB. The structure consists of a pair of asymmetric cylindrical-shaped suppressors above and below the main transmission line. The overall dimensions of the structure are 8.5 mm × 11.8 mm, and the input return loss and isolation parameters are −41 dB and −17.3 dB, respectively, in the working frequency. Also, the fundamental frequency can be adjusted by changing the dimensions of the resonators and suppressors. The particle swarm optimization (PSO) optimization algorithm has been used to analyze and calculate the inductor and capacitor values of the equivalent LC circuit of the proposed WPD. In the passband (1.4GHz to 3.3GHz) of this power divider, the output return loss and isolation are less than −15 dB and the insertion loss is between −3.08 dB and −3.13 dB, so the fractional bandwidth (FBW) is 73%. The structure is compact and easy to be fabricated and has potential applications in communication devices.
[1] D. M. Pozar. Microwave engineering. John wiley & sons, 2011.
[2] S. A. Zonouri and M. Hayati, (2021) “A compact Gysel power divider with ultra-wide rejection band and high fractional bandwidth" International Journal of RF and Microwave Computer-Aided Engineering 31(6): DOI: 10.1002/mmce.22643.
[3] M. Wang, Z. Wu, X. Liao, F. Li, Y. Pu, J. Wang, and Y. Luo, (2023) “Analysis and Design of High-Efficient High-Power Spatial Power Divider" IEEE Transactions on Antennas and Propagation 71(7): 6006–6013. DOI: 10.1109/TAP.2023.3266797.
[4] F. Razzaz, S. M. Saeed, and M. A. S. Alkanhal, (2022) “Compact Ultra-Wideband Wilkinson Power Dividers Using Linearly Tapered Transmission Lines" Electronics (Switzerland) 11(19): DOI: 10.3390/electronics11193080.
[5] S. A. Zonouri and M. Hayati, (2019) “A compact ultrawideband Wilkinson power divider based on trapezoidal and triangular-shaped resonators with harmonics suppression" Microelectronics Journal 89: 23–29. DOI: 10.1016/j.mejo.2019.05.001.
[6] A. Qaedrahmati, A. Sheikhi, and A. Abdipour, (2022) “A wideband filtering Wilkinson power divider integrated with good harmonic suppression" Microwave and Optical Technology Letters 64(1): 104–109. DOI: 10.1002/mop.33065.
[7] S. Saleh, A. Alzoubi, and M. Bataineh. “Compact UWB Unequal Split Wilkinson Power Divider Using Nonuniform Transmission Lines”. In: Cited by: 9. 2018. DOI: 10.1109/ICCCEEE.2018.8515887.
[8] N. M. Giang and L. D. Manh, (2022) “A Simple Approach for Improving Bandwidth and Isolation of Wilkinson Power Divider" Radioengineering 31(2): 224–230. DOI: 10.13164/re.2022.0224.
[9] A. Sheikhi and P. Rostami, (2022) “Design of a filtering power divider with high selectivity based on coupled lines" Microwave and Optical Technology Letters 64(2): 269–275. DOI: 10.1002/mop.33090.
[10] L. Jiao, Y. Wu, Z. Zhuang, Y. Liu, and A. A. Kishk, (2018) “Planar balanced-to-unbalanced in-phase power divider with wideband filtering response and ultra-wideband common-mode rejection" IEEE Transactions on Circuits and Systems I: Regular Papers 65(6): 1875– 1886. DOI: 10.1109/TCSI.2017.2766366.
[11] W. Li, X. Chai, X. Ye, and X. Shi, (2020) “A T-junction power divider with tunable operating frequency and dividing ratio" Microwave and Optical Technology Letters 62(6): 2156–2162. DOI: 10.1002/mop.32297.
[12] R. Gomez-Garcia, J.-M. Munoz-Ferreras, and D. Psychogiou, (2019) “RF Reflectionless Filtering Power Dividers" IEEE Transactions on Circuits and Systems II: Express Briefs 66(6): 933–937. DOI: 10.1109/TCSII. 2018.2875172.
[13] L. Guo, H. Zhu, and A. Abbosh, (2019) “Phase Reconfigurable Microwave Power Divider" IEEE Transactions on Circuits and Systems II: Express Briefs 66(1): 21– 25. DOI: 10.1109/TCSII.2018.2829200.
[14] H. Siahkamari, Z. Yasoubi, M. Jahanbakhshi, S. M. H. Mousavi, P. Siahkamari, M. E. Nouri, S. Azami, and R. Azadi, (2018) “Design of Compact Wilkinson Power Divider with Harmonic Suppression using T-Shaped Resonators" Frequenz 72(5-6): 253–259. DOI: 10.1515/ freq-2016-0219.
[15] M. Hayati, M. A. Sattari, S. Zarghami, and S. M. Shah-ebrahimi, (2023) “Designing ultra-small Wilkinson power divider with multi-harmonics suppression" Journal of Electromagnetic Waves and Applications 37(4): 575–591. DOI: 10.1080/09205071.2022.2157760.
[16] W.-L. Zhan and X.-L. Zhao, (2017) “Compact filtering power divider with harmonic suppression" Journal of Electromagnetic Waves and Applications 31(3): 243–249. DOI: 10.1080/09205071.2016.1264317.
[17] Y. Wang, X.-Y. Zhang, F.-X. Liu, and J.-C. Lee, (2017) “A Compact Bandpass Wilkinson Power Divider With Ultra-Wide Band Harmonic Suppression" IEEE Microwave and Wireless Components Letters 27(10): 888–890. DOI: 10.1109/LMWC.2017.2745484.
[18] S. Roshani, M. B. Jamshidi, F. Mohebi, and S. Roshani, (2021) “Design and modeling of a compact power divider with squared resonators using artificial intelligence" Wireless Personal Communications 117: 2085–2096. DOI: 10.1007/s11277-020-07960-5.
[19] S. A. Zonouri, M. Hayati, and M. Bahrambeigi, (2023) “Design of dual-band Wilkinson power divider based on novel stubs using PSO algorithm" International Journal of Microwave and Wireless Technologies: 1–12. DOI: 10.1017/S1759078723000077.
[20] J.-S. G. Hong and M. J. Lancaster. Microstrip filters for RF/microwave applications. John Wiley & Sons, 2004.
[21] R. Eberhart and J. Kennedy. “Particle swarm optimization”. In: Proceedings of the IEEE international conference on neural networks. 4. Citeseer. 1995, 1942–1948.
[22] H. Xie, X. Xu, H. Wu, N. Wang, et al., (2023) “Multiobjective Particle Swarm Optimization to Design the Top Load of a Very Low Frequency Thirteen-Tower Umbrella Antenna" International Journal of RF and Microwave Computer-Aided Engineering 2023: DOI: 10.1155/2023/1792918.
[23] R. K. Verma and D. K. Srivastava, (2021) “Optimization and parametric analysis of slotted microstrip antenna using particle swarm optimization and curve fitting" International Journal of Circuit Theory and Applications 49(7): 1868–1883. DOI: 10.1002/cta.2957.
[24] L. He, X. Li, Y. Zhao, Z. Zhong, J. Zhang, Y. Yang, and X. Xi, (2022) “The multilayer structure design of magnetic-carbon composite for ultra-broadband microwave absorption via PSO algorithm" Journal of Alloys and Compounds 913: 165088. DOI: https: //doi.org/10.1016/j.jallcom.2022.165088.
[25] Eberhart and Y. Shi. “Particle swarm optimization: developments, applications and resources”. In: Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546). 1. 2001, 81–86 vol. 1. DOI: 10.1109/CEC.2001.934374.
[26] Y. Shi and R. Eberhart. “A modified particle swarm optimizer”. In: 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360). 1998, 69–73. DOI: 10.1109/ICEC.1998.699146.
[27] R. Eberhart and Y. Shi. “Comparing inertia weights and constriction factors in particle swarm optimization”. In: Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512). 1. 2000, 84–88 vol.1. DOI: 10.1109/CEC.2000.870279.
[28] S. El Mattar and A. Baghdad, (2023) “High-efficiency 2.45 and 5.8 GHz dual-band rectifier design with modulated input signals and a wide input power range." International Journal of Electrical & Computer Engineering (2088-8708) 13(3):
[29] S. El Mattar, A. Baghdad, and A. Ballouk. “A novel two-branch dual-band rectifier for 2.45 GHz 5.8 GHz RFID systems”. In: WITS 2020: Proceedings of the 6th International Conference on Wireless Technologies, Embedded, and Intelligent Systems. Springer. 2022, 943– 948. DOI: 10.1007/978-981-33-6893-4_85.
[30] K.-K. M. Cheng and F.-L. Wong, (2007) “A New Wilkinson Power Divider Design for Dual Band Application" IEEE Microwave and Wireless Components Letters 17(9): 664–666. DOI: 10.1109/LMWC.2007.903454.
[31] S. Chen and T.-L. Wu, (2020) “A Fully Integrated Arbitrary Power Divider on Printed Circuit Board by a Novel SMD-Resistor-Free Isolation Network" IEEE Transactions on Components, Packaging and Manufacturing Technology 10(11): 1889–1901. DOI: 10.1109/TCPMT.2020.3029782.
[32] Y. Bai and K. D. Xu, (2018) “High-performance filtering power divider with multiple transmission zeros" Microwave and Optical Technology Letters 60(11): 2673–2676. DOI: 10.1002/mop.31468.
[33] M.-T. Chen and C.-W. Tang, (2018) “Design of the Filtering Power Divider With a Wide Passband and Stopband" IEEE Microwave and Wireless Components Letters 28(7): 570–572. DOI: 10.1109/LMWC.2018.2835446.
[34] H. Tian and Y. Dong, (2023) “Packaged Filtering Power Divider With High Selectivity, Extended Stopband and Wideband Isolation" IEEE Transactions on Circuits and Systems II: Express Briefs 70(4): 1311–1315. DOI: 10.1109/TCSII.2022.3227169.
[35] S.-A. Malakooti, H. Siahkamari, and P. Siahkamari, (2015) “Compact and unequal Gysel power divider with dual harmonic rejection and simple structure" International Journal of Electronics Letters 3(1): 58–67. DOI: 10.1080/21681724.2014.906660.
[36] J. Shi, J. Lu, K. Xu, and J.-X. Chen, (2017) “A CoupledLine Balanced-to-Single-Ended Out-of-Phase Power Divider With Enhanced Bandwidth" IEEE Transactions on Microwave Theory and Techniques 65(2): 459– 466. DOI: 10.1109/TMTT.2016.2636147.
We use cookies on this website to personalize content to improve your user experience and analyze our traffic. By using this site you agree to its use of cookies.