Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Omar Qistina1,4, Ali Salmiaton1,2This email address is being protected from spambots. You need JavaScript enabled to view it., Thomas S.Y. Choong1,2, Shamsul Izhar1,2, and Yun Hin Taufiq-Yap3

1Department of Chemical & Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

2Sustainable Process Engineering Research Centre, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

3Catalysis Science and Technology Research Centre, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

4Centre of Foundation Studies, Universiti Teknologi MARA, Cawangan Selangor, Kampus Dengkil, 43800 Dengkil, Selangor, Malaysia


 

 

Received: October 16, 2023
Accepted: January 9, 2024
Publication Date: March 8, 2024

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202501_28(1).0002  


Carbon nanotubes (CNTs) have been used as catalyst support in various catalytic activity. The existing CNTs in powder form can create high back pressure and inconvenient operational. Therefore, CNTs coated onto monolith structure provides a promising support for catalyst. In this study, the CNT monolith was synthesized using a chemical vapor deposition (CVD) method with deposition catalyst techniques determined by immersion and impregnation method. The synthesized CNTs monolith were characterized for surface morphology analysis, atomic composition, thermal stability, textural properties, functional group determination and crystallinity. The findings show that the CNTs formed are considered mesoporous nanotubes that attained a diameter size distribution scattered between 30 nm and 35 nm. The carbon yield was successfully achieved at more than 95% by the double immersion in the preparation technique. The CNTs monolith showed a very weak peak due to poor infrared transmittance, while the surface analysis of the CNTs monolith exhibited the type IV isotherm with H3 hysteresis in the presents of mesoporous structures with a relative pressure range of P/Po >0.4. The peak at 2 = 26.46° of the XRD pattern demonstrated a decrease after the synthesizing of CNTs growth onto monolith structure due to the production of carbon. The thermal analysis of the CNTs monolith showed a weight loss of moisture and organic residue of 0.13% and 3%, respectively. The results displayed an optional synthesis method and characterization information of CNTs structured monolith as value added for future production and application


Keywords: carbon nanotubes; monolith; immersion; nickel; chemical vapor deposition


  1. [1] J. Tang, (2020) “Carbon nanotube-based flexible electronics" Flexible, Wearable, and Stretchable Electronics: 137–156. DOI: 10.1201/9780429263941-5.
  2. [2] R. Maheswaran and B. P. Shanmugavel, (2022) “A critical review of the role of carbon nanotubes in the progress of next-generation electronic applications" Journal of Electronic Materials 51(6): 2786–2800. DOI: 10.1007/S11664-022-09516-8.
  3. [3] S. Zhu, J. Sheng, Y. Chen, J. Ni, and Y. Li, (2021) “Carbon nanotubes for flexible batteries: recent progress and future perspective" National Science Review 8(5): nwaa261. DOI: 10.1093/nsr/nwaa261.
  4. [4] R. Amin, P. R. Kumar, and I. Belharouak. Carbon Nanotubes–Redefining the World of Electronics. 2020.
  5. [5] E. Vázquez and M. Prato, (2010) “Functionalization of carbon nanotubes for applications in materials science and nanomedicine" Pure and Applied Chemistry 82(4): 853–861. DOI: 10.1351/PAC-CON-09-10-40/html.
  6. [6] B. O. Murjani, P. S. Kadu, M. Bansod, S. S. Vaidya, and M. D. Yadav, (2022) “Carbon nanotubes in biomedical applications: current status, promises, and challenges" Carbon Letters 32(5): 1207–1226. DOI: 10.1007/s42823-022-00364-4.
  7. [7] V. Raphey, T. Henna, K. Nivitha, P. Mufeedha, C. Sabu, and K. Pramod, (2019) “Advanced biomedical applications of carbon nanotube" Materials Science and Engineering: C 100: 616–630. DOI: 10.1016/j.msec.2019.03.043.
  8. [8] M.-S. Hong, Y. Park, T. Kim, K. Kim, and J.-G. Kim, (2020) “Polydopamine/carbon nanotube nanocomposite coating for corrosion resistance" Journal of Materiomics 6(1): 158–166. DOI: 10.1016/j.jmat.2020.01.004.
  9. [9] A. Kubley, M. Chitranshi, X. Hou, and M. Schulz, (2021) “Manufacturing and Characterization of Customizable Flexible Carbon Nanotube Fabrics for Smart Wearable Applications" Textiles 1(3): 534–546. DOI: 10.3390/textiles1030028.
  10. [10] M. Romero-Sáez, A. Dongil, N. Benito, R. EspinozaGonzález, N. Escalona, and F. Gracia, (2018) “CO2 methanation over nickel-ZrO2 catalyst supported on carbon nanotubes: A comparison between two impregnation strategies" Applied Catalysis B: Environmental 237: 817–825. DOI: 10.1016/j.apcatb.2018.06.045.
  11. [11] K. S. Ibrahim, (2013) “Carbon nanotubes? properties and applications: A review" Carbon letters 14(3): 131–144. DOI: 10.5714/CL.2013.14.3.131.
  12. [12] D. R. Minett, J. P. O’Byrne, M. D. Jones, V. P. Ting, T. J. Mays, and D. Mattia, (2013) “One-step production of monolith-supported long carbon nanotube arrays" Carbon 51: 327–334. DOI: 10.1016/j.carbon.2012.08.060.
  13. [13] M. Mohammad, A. A. Moosa, J. Potgieter, and M. K. Ismael, (2013) “Carbon nanotubes synthesis via arc discharge with a Yttria catalyst" International Scholarly Research Notices 2013: DOI: 10.1155/2013/785160.
  14. [14] M. C. Paladugu, K. Maneesh, P. K. Nair, and P. Haridoss, (2005) “Synthesis of carbon nanotubes by arc discharge in open air" Journal of nanoscience and nanotechnology 5(5): 747–752. DOI: 10.1166/jnn.2005.108.
  15. [15] J. Chrzanowska, J. Hoffman, A. Małolepszy, M. Mazurkiewicz, T. A. Kowalewski, Z. Szymanski, and L. Stobinski, (2015) “Synthesis of carbon nanotubes by the laser ablation method: Effect of laser wavelength" physica status solidi (b) 252(8): 1860–1867. DOI: 10.1002/pssb.201451614.
  16. [16] T. Kuo, C. Chi, and I. Lin, (2001) “Synthesis of carbon nanotubes by laser ablation of graphites at room temperature" Japanese Journal of Applied Physics 40(12R): 7147. DOI: 10.1143/JJAP.40.7147.
  17. [17] N. De Greef, L. Zhang, A. Magrez, L. Forró, J.-P. Locquet, I. Verpoest, and J. W. Seo, (2015) “Direct growth of carbon nanotubes on carbon fibers: Effect of the CVD parameters on the degradation of mechanical properties of carbon fibers" Diamond and Related Materials 51: 39–48. DOI: 10.1016/j.diamond.2014.11.002.
  18. [18] W. Zhang, H. Xie, R. Zhang, M. Jian, C. Wang, Q. Zheng, F. Wei, and Y. Zhang, (2015) “Synthesis of threedimensional carbon nanotube/graphene hybrid materials by a two-step chemical vapor deposition process" Carbon 86: 358–362. DOI: 10.1016/j.carbon.2015.01.051.
  19. [19] A. Eatemadi, H. Daraee, H. Karimkhanloo, M. Kouhi, N. Zarghami, A. Akbarzadeh, M. Abasi, Y. Hanifehpour, and S. W. Joo, (2014) “Carbon nanotubes: properties, synthesis, purification, and medical applications" Nanoscale research letters 9: 1–13. DOI: 10.1186/1556-276x-9-393.
  20. [20] J. A. Isaacs, A. Tanwani, M. Healy, and L. Dahlben, (2010) “Economic assessment of single-walled carbon nanotube processes" Journal of Nanoparticle Research 12: 551–562. DOI: 10.1007/s11051-009-9673-3.
  21. [21] R. Zhang, Y. Zhang, and F. Wei, (2017) “Horizontally aligned carbon nanotube arrays: growth mechanism, controlled synthesis, characterization, properties and applications" Chemical Society Reviews 46(12): 3661–3715. DOI: 10.1039/C7CS00104E.
  22. [22] I. Levchenko, Z. Han, S. Kumar, S. Yick, J. Fang, and K. Ostrikov. “Large arrays and networks of carbon nanotubes: morphology control by process parameters”. In: Syntheses and Applications of Carbon Nanotubes and Their Composites. IntechOpen, 2013. DOI: 10.5772/52674.
  23. [23] C.-M. Seah, S.-P. Chai, and A. R. Mohamed, (2011) “Synthesis of aligned carbon nanotubes" Carbon 49(14): 4613–4635. DOI: 10.1016/j.carbon.2011.06.090.
  24. [24] A. Melezhik, M. Smykov, E. Y. Filatova, A. Shuklinov, R. Stolyarov, I. Larionova, and A. Tkachov, (2013) “Synthesis of carbon nanotubes from acetone" Theoretical Foundations of Chemical Engineering 47: 435–443. DOI: 10.1134/S0040579513040131.
  25. [25] D. Ping, C. Wang, X. Dong, and Y. Dong, (2016) “Coproduction of hydrogen and carbon nanotubes on nickel foam via methane catalytic decomposition" Applied Surface Science 369: 299–307. DOI: 10.1016/j.apsusc.2016.02.074.
  26. [26] G. Messina, S. Santangelo, M. G. Donato, M. Lanza, C. Milone, A. Pistone, and S. Galvagno, (2008) “Multiwalled carbon nanotubes production by ethane decomposition over silica-supported iron-catalysts" physica status solidi (a) 205(10): 2422–2427. DOI: 10.1002/pssa.200723647.
  27. [27] M. Zdrojek, J. Sobieski, A. Duzynska, and J. Judek, (2015) “Synthesis of Carbon Nanotubes from Propane ÃÃ" Chem. Vap. Deposition 21: 1–5. DOI: 10.1002/cvde.201404329.
  28. [28] Z. Jiang, R. Song, W. Bi, J. Lu, and T. Tang, (2007) “Polypropylene as a carbon source for the synthesis of multiwalled carbon nanotubes via catalytic combustion" Carbon 45(2): 449–458. DOI: 10.1016/j.carbon.2006.08. 012.
  29. [29] C. Zhuo, H. Richter, and Y. A. Levendis, (2018) “Carbon nanotube production from Ethylene in CO2/N2 environments" Journal of Energy Resources Technology 140(8): 085001. DOI: 10.1115/1.4039328.
  30. [30] A. Hussain, Y. Liao, Q. Zhang, E.-X. Ding, P. Laiho, S. Ahmad, N. Wei, Y. Tian, H. Jiang, and E. I. Kauppinen, (2018) “Floating catalyst CVD synthesis of single walled carbon nanotubes from ethylene for high performance transparent electrodes" Nanoscale 10(20): 9752– 9759. DOI: 10.1039/C8NR00716K.
  31. [31] T. Vergunst, F. Kapteijn, and J. Moulijn, (2002) “Preparation of carbon-coated monolithic supports" Carbon 40(11): 1891–1902. DOI: 10.1016/S0008-6223(02)00034- 9.
  32. [32] M. R. Malekbala, S. Soltani, S. Abdul Rashid, L. C. Abdullah, and T. S. Y. Choong, (2019) “Study the effect of various wash-coated metal oxides over synthesized carbon nanofibers coated monolith substrates" Plos one 14(7): e0219936. DOI: 10.1371/journal.pone.0219936.
  33. [33] M. H. Rümmeli, A. Bachmatiuk, F. Börrnert, F. Schäffel, I. Ibrahim, K. Cendrowski, G. Simha-Martynkova, D. Plachá, E. Borowiak-Palen, G. Cuniberti, et al., (2011) “Synthesis of carbon nanotubes with and without catalyst particles" Nanoscale research letters 6: 1–9. DOI: 10.1186/1556-276X-6-303.
  34. [34] Y. D. Lim, A. V. Avramchuck, D. Grapov, C. W. Tan, B. K. Tay, S. Aditya, and V. Labunov, (2017) “Enhanced carbon nanotubes growth using nickel/ferrocenehybridized catalyst" ACS omega 2(9): 6063–6071. DOI: 10.1021/acsomega.7b00858.
  35. [35] J. Meng, Z. Miao, J. Zhang, Z. Wang, R. Zhang, L. Xu, L. Diao, J. Zhou, and S. Zhuo, (2023) “One-step synthesis of N-doped carbon nanotubes-encapsulated Ni nanoparticles for efficient electrochemical CO2 reduction to CO" Journal of Alloys and Compounds 939: 168798.
  36. [36] Q. Liu, B. Bian, J. Fan, and J. Yang, (2018) “Cobalt doped Ni based ordered mesoporous catalysts for CO2 methanation with enhanced catalytic performance" international journal of hydrogen energy 43(10): 4893– 4901. DOI: 10.1016/j.ijhydene.2018.01.132.
  37. [37] C.-M. Chen, Y.-M. Dai, J. G. Huang, and J.-M. Jehng, (2006) “Intermetallic catalyst for carbon nanotubes (CNTs) growth by thermal chemical vapor deposition method" Carbon 44(9): 1808–1820. DOI: 10.1016/j.carbon.2005.12.043.
  38. [38] S. Hosseini, H. Moghaddas, S. M. Soltani, and S. Kheawhom, (2020) “Technological applications of honeycomb monoliths in environmental processes: a review" Process Safety and Environmental Protection 133: 286–300. DOI: 10.1016/j.psep.2019.11.020.
  39. [39] O. Qistina, A. Salmiaton, T. S. Choong, Y. H. TaufiqYap, and S. Izhar, (2020) “Optimization of carbon nanotube-coated monolith by direct liquid injection chemical vapor deposition based on taguchi method" Catalysts 10(1): 67. DOI: 10.3390/catal10010067.
  40. [40] T. A. Nijhuis, A. E. Beers, T. Vergunst, I. Hoek, F. Kapteijn, and J. A. Moulijn, (2001) “Preparation of monolithic catalysts" Catalysis Reviews 43(4): 345–380. DOI: 10.1081/CR-120001807.
  41. [41] J. Liu. “Carbon nanotubes developed on ceramic constituents through chemical vapour deposition". (phdthesis). Loughborough University, 2012.
  42. [42] W. Gao, Y. Wan, Y. Dou, and D. Zhao, (2011) “Synthesis of partially graphitic ordered mesoporous carbons with high surface areas" Advanced Energy Materials 1(1): 115–123. DOI: 10.1002/aenm.201000009.
  43. [43] N. Saifuddin, A. Raziah, and A. Junizah, (2013) “Carbon nanotubes: a review on structure and their interaction with proteins" Journal of Chemistry 2013: DOI: 10.1155/2013/676815.
  44. [44] C. He, N. Zhao, X. Du, C. Shi, J. Li, and F. He, (2008) “Characterization of bamboo-shaped CNTs prepared using deposition-precipitation catalyst" Materials Science and Engineering: A 479(1-2): 248–252. DOI: 10.1016/j.msea.2007.06.048.
  45. [45] R. Baker, J. Chludzinski Jr, N. Dudash, and A. Simoens, (1983) “The formation of filamentous carbon from decomposition of acetylene over vanadium and molybdenum" Carbon 21(5): 463–468. DOI: 10.1016/0008-6223(83)90138-0.
  46. [46] A. Oberlin, M. Endo, and T. Koyama, (1976) “Filamentous growth of carbon through benzene decomposition" Journal of crystal growth 32(3): 335–349. DOI: 10.1016/0022-0248(76)90115-9.
  47. [47] F. Haniyeh, A. Abdollah, and D. Abolghasem, (2013) “Controlled growth of well-Aligned carbon nanotubes, electrochemical modification and electrodeposition of multiple shapes of gold nanostructures" Materials Sciences and Applications 2013: DOI: 10.4236/msa.2013.411083.
  48. [48] A. Munajad, C. Subroto, and Suwarno, (2018) “Fourier transform infrared (FTIR) spectroscopy analysis of transformer paper in mineral oil-paper composite insulation under accelerated thermal aging" Energies 11(2): 364. DOI: 10.3390/en11020364.
  49. [49] V. Gupta and T. A. Saleh, (2011) “Syntheses of carbon nanotube-metal oxides composites; adsorption and photodegradation" Carbon Nanotubes-From Research to Applications 17: 295–312. DOI: 10.5772/18009.
  50. [50] M. A. Atieh, O. Y. Bakather, B. Al-Tawbini, A. A. Bukhari, F. A. Abuilaiwi, M. B. Fettouhi, et al., (2010) “Effect of carboxylic functional group functionalized on carbon nanotubes surface on the removal of lead from water" Bioinorganic chemistry and applications 2010: DOI: 10.1155/2010/603978.
  51. [51] F. A. Azri, R. Sukor, R. Hajian, N. A. Yusof, F. A. Bakar, and J. Selamat, (2017) “Modification strategy of screen-printed carbon electrode with functionalized multiwalled carbon nanotube and chitosan matrix for biosensor development" Asian Journal of Chemistry 29(1): 31. DOI: 10.14233/ajchem.2017.20104.
  52. [52] J. Liang, Z. Wu, H. Lei, X. Xi, T. Li, and G. Du, (2017) “The reaction between furfuryl alcohol and model compound of protein" Polymers 9(12): 711. DOI: 10.3390/polym9120711.
  53. [53] D. Vélez, W. Magalhães, and G. Capobianco, (2018) “Carbon fiber from fast pyrolysis bio-oil" Science and Technology of Materials 30: 16–22. DOI: 10.1016/j.stmat.2018.10.001.
  54. [54] A. I. Osman, C. Farrell, A. H. Al-Muhtaseb, J. Harrison, and D. W. Rooney, (2020) “The production and application of carbon nanomaterials from high alkali silicate herbaceous biomass" Scientific reports 10(1): 2563. DOI: 10.1038/s41598-020-59481-7.
  55. [55] R. Yudianti, H. Onggo, Y. Saito, T. Iwata, J.-i. Azuma, et al., (2011) “Analysis of functional group sited on multi-wall carbon nanotube surface" The Open Materials Science Journal 5(1): DOI: 10.2174/1874088X01105010242.
  56. [56] M. W. Lee, M. A. S. M. Haniff, A. S. Teh, D. C. Bien, and S. K. Chen, (2015) “Effect of Co and Ni nanoparticles formation on carbon nanotubes growth via PECVD" Journal of Experimental Nanoscience 10(16): 1232–1241. DOI: 10.1080/17458080.2014.994679.
  57. [57] M. E. Birch, T. A. Ruda-Eberenz, M. Chai, R. Andrews, and R. L. Hatfield, (2013) “Properties that influence the specific surface areas of carbon nanotubes and nanofibers" Annals of occupational hygiene 57(9): 1148–1166. DOI: 10.1093/annhyg/met042.
  58. [58] M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, and K. S. Sing, (2015) “Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)" Pure and applied chemistry 87(9-10): 1051–1069. DOI: 10.1515/pac-2014-1117.
  59. [59] L. Di, H. Yang, T. Xian, and X. Chen, (2018) “Construction of Z-scheme g-C3N4/CNT/Bi2Fe4O9 composites with improved simulated-sunlight photocatalytic activity for the dye degradation" Micromachines 9(12): 613. DOI: 10.3390/mi9120613.
  60. [60] Z. Tian, C. Liu, Q. Li, J. Hou, Y. Li, and S. Ai, (2015) “Nitrogen-and oxygen-functionalized carbon nanotubes supported Pt-based catalyst for the selective hydrogenation of cinnamaldehyde" Applied Catalysis A: General 506: 134–142. DOI: 10.1016/j.apcata.2015.08.023.
  61. [61] D.-Y. Kang and J. H. Moon, (2014) “Carbon nanotube balls and their application in supercapacitors" ACS applied materials & interfaces 6(1): 706–711. DOI: 10.1021/am404960r.
  62. [62] H. A. Asmaly, B. Abussaud, T. A. Saleh, V. K. Gupta, M. A. Atieh, et al., (2015) “Ferric oxide nanoparticles decorated carbon nanotubes and carbon nanofibers: from synthesis to enhanced removal of phenol" Journal of Saudi Chemical Society 19(5): 511–520. DOI: 10.1016/j.jscs.2015.06.002.
  63. [63] F. M. Anjalin, (2014) “Synthesis and characterization of MWCNTs/PVDF nanocomposite and its electrical studies" Der Pharma Chemica 6(1): 354–359.
  64. [64] E. Soghrati, M. Kazemeini, A. Rashidi, and K. J. Jozani, (2014) “Development of a structured monolithic support with a CNT washcoat for the naphtha HDS process" Journal of the Taiwan Institute of Chemical Engineers 45(3): 887–895. DOI: 10.1016/j.jtice.2013.08.009.