Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Mohammed Mumtaz Al-DabbaghThis email address is being protected from spambots. You need JavaScript enabled to view it.

Computer Engineering Department, Tishk International University, Erbil, Iraq


 

 

Received: December 7, 2023
Accepted: February 23, 2024
Publication Date: April 4, 2024

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202501_28(1).0018  


In drug discovery, Virtual Screening (VS) encompasses the computational endeavor to unearth novel lead compounds via molecular similarity analysis. Amongst the array of techniques for ligand-based virtual screening (LBVS), similarity searching emerges as a quintessential and widely-adopted method. A prevailing assumption in many similarity search strategies posits that molecular structural features, irrespective of their biological activity, hold comparable importance. This paper delves into the AUG weighting scheme, aiming to bolster the application of quantum theory in LBVS, culminating in the formulation of a novel quantum-based similarity approach termed the QM-AUG method. Within the domain of molecular structure representation, the role of mathematical quantum space in enhancing the potency of the similarity method cannot be understated. The AUG weighting technique scrutinizes the potential consequences of adjusting weights allotted to chemical fragments, with the overarching objective of refining the quantum model’s efficiency in LBVS. Methodological robustness was gauged through the recall metrics of extracted active molecules, notably within the top 1% and 5% echelons. Furthermore, comprehensive experimental evaluations using authentic datasets, specifically the MDL Drug Data Report (MDDR) and Maximum Unbiased Validation (MUV), indicate that the proposed method surpasses the performance seen with its implementation in the Bayesian Inference Network and the conventional Taninmoto coefficient.


Keywords: ligand-based; Virtual screening; Quantum-based similarity; Similarity searching method; Quantum Weighting Scheme; AUG Weighting Technique


  1. [1] P. Willett, (2009) “Similarity methods in chemoinformatics" Annual Review of Information Science and Technology 43(1): 1–117. DOI: 10.1002/aris.2009.1440430108.
  2. [2] R. P. Sheridan, (2007) “Chemical similarity searches: when is complexity justified?" Expert opinion on drug discovery 2(4): 423–430.
  3. [3] L. Y. E. Ekaney, D. B. Eni, and F. Ntie-Kang, (2021) “Chemical similarity methods for analyzing secondary metabolite structures" Physical Sciences Reviews 6: 247–264. DOI: 10.1515/psr-2018-0129.
  4. [4] M. A. Johnson and G. M. Maggiora, (1990) “Concepts and applications of molecular similarity" John Wiley Sons: New York,NY,USA:
  5. [5] S.-Q. Yang, Q. Ye, J.-J. Ding, M.-Z. Yin, A.-P. Lu, X. Chen, T.-J. Hou, and D.-S. Cao, (2021) “Current advances in ligand-based target prediction" Wiley Interdisciplinary Reviews: Computational Molecular Science 11(3): e1504.
  6. [6] A. Bender, H. Y. Mussa, R. C. Glen, and S. Reiling, (2004) “Molecular Similarity Searching Using Atom Environments, Information-Based Feature Selection, and a Naïve Bayesian Classifier" Journal of Chemical Information and Computer Sciences 44(1): DOI: 10.1021/ci034207y.
  7. [7] A. Maldonado, J. P. Doucet, M. Petitjean, and B.-T. Fan, (2006) “Molecular similarity and diversity in chemoinformatics: From theory to applications" Molecular Diversity 10(1): 39–79. DOI: 10.1007/s11030-006-8697-1.
  8. [8] A. Abdo and M. Pupin, (2021) “LINGO-DL: a textbased approach for molecular similarity searching" Journal of Computer-Aided Molecular Design 35(5): DOI: 10.1007/s10822-021-00383-9.
  9. [9] G. Maggiora, M. Vogt, D. Stumpfe, and J. Bajorath, (2014) “Molecular similarity in medicinal chemistry" J Med Chem 57: DOI: 10.1021/jm401411z.
  10. [10] A. Abdo, B. Chen, C. Mueller, N. Salim, and P. Willett, (2010) “Ligand-Based Virtual Screening Using Bayesian Networks" Journal of Chemical Information and Modeling 50(6): 1012–1020. DOI: 10.1021/ci100090p.
  11. [11] M. M. Al-Dabbagh, N. Salim, M. Himmat, A. Ahmed, and F. Saeed, (2015) “A quantum-based similarity method in virtual screening" Molecules 20(10): 18107–18127. DOI: 10.3390/molecules201018107.
  12. [12] P. Willett, (2006) “Enhancing the Effectiveness of LigandBased Virtual Screening Using Data Fusion" QSAR Combinatorial Science 25(12): 1143–1152. DOI: 10.1002/qsar.200610084.
  13. [13] J. Hert, P. Willett, D. J. Wilton, P. Acklin, K. Azzaoui, E. Jacoby, and A. Schuffenhauer, (2005) “Enhancing the effectiveness of similarity-based virtual screening using nearest-neighbor information" Journal of medicinal chemistry 48(22): 7049–7054.
  14. [14] A. Ahmed, A. Abdo, and N. Salim, (2012) “Ligandbased Virtual screening using Bayesian inference network and reweighted fragments" The Scientific World Journal:
  15. [15] M. Nasser, N. Salim, H. Hamza, F. Saeed, and I. Rabiu, (2020) “Features Reweighting and Selection in ligand-based Virtual Screening for Molecular Similarity Searching Based on Deep Belief Networks" Advances in Data Science and Adaptive Analysis 12(03n04): 2050009–2050009. DOI: 10.1142/s2424922x20500096.
  16. [16] R. Todeschini, V. Consonni, H. Xiang, J. Holliday, M. Buscema, and P. Willett, (2012) “Similarity Coefficients for Binary Chemoinformatics Data: Overview and Extended Comparison Using Simulated and Real Data Sets" Journal of Chemical Information and Modeling 52(11): 2884–2901. DOI: 10.1021/ci300261r.
  17. [17] P. Willett, (2000) “Textual and chemical information processing: different domains but similar algorithms" Information Research 5(2):
  18. [18] S. M. Arif, J. D. Holliday, and P. Willett. “The Use of Weighted 2D Fingerprints in Similarity-Based Virtual Screening”. In: Advances in Mathematical Chemistry and Applications: Revised Edition. 1. Elsevier Inc., 2015, 92–112. DOI: 10.1016/B978-1-68108-198-4.50005-9.
  19. [19] P. Willett and V. Winterman, (1986) “A Comparison of Some Measures for the Determination of Inter-Molecular Structural Similarity Measures of Inter-Molecular Structural Similarity" Quantitative Structure-Activity Relationships 5(1): 18–25.
  20. [20] T. E. Moock, D. L. Grier, W. D. Hounshell, G. Grethe, K. Cronin, J. G. Nourse, and J. Theodosiou, (1988) “Similarity searching in the organic reaction domain" Tetrahedron Computer Methodology 1(2): 117–128.
  21. [21] A. Abdo and N. Salim, (2010) “New fragment weighting scheme for the bayesian inference network in ligandbased virtual screening" Journal of chemical information and modeling 51(1): 25–32.
  22. [22] S. Klinger and J. Austin. “Weighted superstructures for chemical similarity searching”. In: Proceedings of the 9th Joint Conference on Information Sciences. 2006.
  23. [23] M. Vogt, A. M. Wassermann, and J. Bajorath, (2010) “Application of information—Theoretic concepts in chemoinformatics" Information 1(2): 60–73.
  24. [24] J. D. Holliday, C. Hu, and P. Willett, (2002) “Grouping of coefficients for the calculation of inter-molecular similarity and dissimilarity using 2D fragment bit-strings" Combinatorial chemistry high throughput screening 5(2): 155–166.
  25. [25] G. Maggiora and V. Shanmugasundaram. “Molecular Similarity Measures”. In: Chemoinformatics. Ed. by J. Bajorath. 275. Methods in Molecular Biology™. Humana Press, 2004. Chap. 1, 1–50. DOI: 10.1385/1-59259-802-1:001.
  26. [26] C. J. v. Rijsbergen. The Geometry of Information Retrieval. UK: Cambridge University Press, 2004.
  27. [27] M. Melucci and K. van Rijsbergen. “Quantum mechanics and information retrieval”. In: Advanced topics in information retrieval. Germany: Springer Berlin Heidelberg, 2011, 125–155.
  28. [28] G. Salton and C. Buckley, (1988) “Term-weighting approaches in automatic text retrieval" Information processing management 24(5): 513–523.
  29. [29] P. A. M. Dirac. The principles of quantum mechanics. Oxford university press, 1981.
  30. [30] MDL Drug Data Report (MDDR). Web Page.
  31. [31] S. G. Rohrer and K. Baumann, (2009) “Maximum unbiased validation (MUV) data sets for virtual screening based on PubChem bioactivity data" Journal of chemical information and modeling 49(2): 169–184.
  32. [32] Pipeline Pilot Software : SciTegic Accelrys Inc. Computer Program.
  33. [33] P. Legendre, (2005) “Species associations: the Kendall coefficient of concordance revisited" Journal of agricultural, biological, and environmental statistics 10(2): 226–245.


Latest Articles