Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Marwah Sabah Fakhri1,2, Ahmed Al-Mukhtar3,4This email address is being protected from spambots. You need JavaScript enabled to view it., and Ibtihal A. Mahmood2

1Ministry of Higher Education and Scientific Research-Baghdad, Iraq

2University of Technology-Iraq, Mechanical Engineering Department, Baghdad, Iraq

3College of Engineering, Al-Hussain University College, Iraq

4Institute of Structural Mechanics, Bauhaus-Universität Weimar, Germany


 

 

Received: January 27, 2024
Accepted: July 22, 2024
Publication Date: September 25, 2024

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202507_28(7).0003  


For decades, resistance spot welding (RSW) between aluminum and copper has encountered difficulties; however, it remains essential for modern applications. Additionally, crack propagation and the stress intensity factor (SIF) of dissimilar RSW have not been extensively investigated. The welding parameters used for Al-Al joints were as follows: welding current, time, and electrode force were set at 14,000 Amps, 0.8 seconds, and 7,000 N, respectively. Conversely, for Al-Cu joints, 14,000 Amps, 1 second, and 8,800 N were determined. The similar joints exhibited an average weld nugget size of 6 mm, whereas the dissimilar joints had a nugget size of 5.2 mm. The tensile shear force was 690 N and 780 N for dissimilar and similar joints, respectively. Accordingly, the fatigue load, as a percentage of the tensile force, was utilized at 414 N and 468 N for Al-Cu and Al-Al, respectively. Finite Element Analysis (FEA) was employed to determine the SIF. The initial crack length was determined to be 0.1 mm. The numerical solution was then compared with theoretical solutions for the opening SIF-KI, such as the equations proposed by Pook and Zhang. The FEA results showed higher values of SIF compared to those from theoretical solutions. Additionally, crack propagation was investigated for both dissimilar and similar joints at a determined failure load. Cracks tended to develop close to the heat-affected zone (HAZ) around the weld nugget diameter (dn). SIF and crack path have been verified.

 


Keywords: Aluminum; Copper; Crack; Fracture; Resistance spot welding; Stress intensity factor


  1. [1] M. S. Fakhri, A. Al-Mukhtar, and I. A. Mahmood, (2022) “Comparative Study of the Mechanical Properties of Spot Welded Joints" Materials Science Forum 1079: 21–28. DOI: 10.4028/p-488xsr.
  2. [2] A. Al-Mukhtar, (2016) “Review of Resistance Spot Welding Sheets: Processes and Failure Mode" Advanced Engineering Forum 17: 31–57. DOI: 10.4028/www.scientific.net/AEF.17.31.
  3. [3] A. Al-Mukhtar, (2019) “Case Studies of Aircraft Fuselage Cracking" Advanced Engineering Forum 33: 11– 18. DOI: 10.4028/www.scientific.net/AEF.33.11.
  4. [4] A. Al-Mukhtar, (2020) “Aircraft Fuselage Cracking and Simulation" Procedia Structural Integrity 28: 124–131. DOI: 10.1016/j.prostr.2020.10.016.
  5. [5] A. M. Al-Mukhtar and Q. Doos, (2013) “The Spot Weldability of Carbon Steel Sheet" Advances in Materials Science and Engineering 2013: 1–6. DOI: 10.1155/2013/146896.
  6. [6] A. M. Al-Mukhtar, T. Rahman, and Q. M. Doos. “Spot Welding Joint’s Fracture Behavior and Fundamental”. In: Fracture, Fatigue and Wear. 2019, 18–27. DOI: 10.1007/978-981-13-0411-8_2.
  7. [7] M. Fakhri, A. Al-Mukhtar, and I. Mahmood, (2024) “Effect of Mechanical Deformation on the Electrical Conductivity of Resistance Spot Welding Joints" Journal of Applied Science and Engineering (Taiwan) 27(9): 3095–3103. DOI: 10.6180/jase.202409_27(9).0007.
  8. [8] A. Al-Mukhtar, H. Biermann, S. Henkel, and P. Hübner, (2010) “Comparison of the Stress Intensity Factor of Load-Carrying Cruciform Welded Joints with Different Geometries" Journal of Materials Engineering and Performance 19(6): 802–809. DOI: 10.1007/s11665-009-9552-1.
  9. [9] T. K. Pal and K. Bhowmick, (2012) “Resistance Spot Welding Characteristics and High Cycle Fatigue Behavior of DP 780 Steel Sheet" Journal of Materials Engineering and Performance 21(2): 280–285. DOI: 10.1007/s11665-011-9850-2.
  10. [10] J. Ordoñez, R. Ambriz, C. García, G. Plascencia, and D. Jaramillo, (2019) “Overloading effect on the fatigue strength in resistance spot welding joints of a DP980 steel" International Journal of Fatigue 121: 163–171. DOI: 10.1016/j.ijfatigue.2018.12.026.
  11. [11] H. T. Kang, A. Khosrovaneh, H. Hu, and U. De Souza. “A Fatigue Prediction Method for Spot Welded Joints”. In: 2013, 2013–01–1208. DOI: 10.4271/2013-01-1208.
  12. [12] P. Banerjee, R. Sarkar, T. Pal, and M. Shome, (2016) “Effect of nugget size and notch geometry on the high cycle fatigue performance of resistance spot welded DP590 steel sheets" Journal of Materials Processing Technology 238: 226–243. DOI: 10.1016/j.jmatprotec.2016.07.023.
  13. [13] A. M. Almukhtar. Fracture simulation of welded joints. Nova Science Publishers Hauppauge, NY, USA, 2011.
  14. [14] A. M. Al-Mukhtar, (2013) “Investigation of the Thickness Effect on the Fatigue Strength Calculation" Journal of Failure Analysis and Prevention 13(1): 63–71. DOI: 10.1007/s11668-012-9629-2.
  15. [15] S. Zhang, (1999) “Approximate stress intensity factors and notch stresses for common spot-welded specimens" Welding Journal 78:
  16. [16] J. Zhang, P. Dong, and Y. Gao. “Evaluation of Stress Intensity Factor-Based Predictive Technique for Fatigue Life of Resistance Spot Welds”. In: 2001, 2001– 01–0830. DOI: 10.4271/2001-01-0830.
  17. [17] D. Wang, S. Lin, and J. Pan, (2005) “Stress intensity factors for spot welds and associated kinked cracks in cup specimens" International Journal of Fatigue 27(5): 581–598. DOI: 10.1016/j.ijfatigue.2004.08.008.
  18. [18] D.-A. Wang and J. Pan, (2005) “A computational study of local stress intensity factor solutions for kinked cracks near spot welds in lap-shear specimens" International Journal of Solids and Structures 42(24-25): 6277– 6298. DOI: 10.1016/j.ijsolstr.2005.05.036.
  19. [19] R. I. Stephens and H. O. Fuchs, eds. Metal fatigue in engineering. 2nd ed. New York: Wiley, 2001.
  20. [20] U. Zerbst, M. Madia, and H. Beier, (2017) “Fatigue strength and life determination of weldments based on fracture mechanics" Procedia Structural Integrity 7: 407–414. DOI: 10.1016/j.prostr.2017.11.106.
  21. [21] A. M. Al-Mukhtar, (2013) “Consideration of the residual stress distributions in fatigue crack growth calculations for assessing welded steel joints" Fatigue & Fracture of Engineering Materials & Structures 36(12): 1352–1361. DOI: 10.1111/ffe.12060.
  22. [22] D.-A. Wang, P.-C. Lin, and J. Pan, (2005) “Geometric functions of stress intensity factor solutions for spot welds in lap-shear specimens" International Journal of Solids and Structures 42(24-25): 6299–6318. DOI: 10.1016/j.ijsolstr.2005.05.037.
  23. [23] Y. Uematsu and K. Tokaji, (2009) “Comparison of fatigue behaviour between resistance spot and friction stir spot welded aluminium alloy sheets" Science and Technology of Welding and Joining 14(1): 62–71. DOI: 10.1179/136217108X338908.
  24. [24] N. Pan and S. D. Sheppard, (2002) “Stress intensity factors in spot welds" Engineering Fracture Mechanics 70(5): 671–684. DOI: https://doi.org/10.1016/S0013-7944(02)00076-0
  25. [25] S. Zhang, (1997) “Stress intensities at spot welds" International Journal of Fracture 88(2): 167–185. DOI: 10.1023/A:1007461430066.
  26. [26] Y.-G. Kim, B.-J. Jo, J.-S. Kim, and I.-J. Kim, (2017) “A study on dissimilar welding of aluminum alloy and advanced high strength steel by spot welding process" International Journal of Precision Engineering and Manufacturing 18(1): 121–126. DOI: 10.1007/s12541-017-0015-6.
  27. [27] M. Li, C. Zhang, D. Wang, L. Zhou, D. Wellmann, and Y. Tian, (2019) “Friction Stir Spot Welding of Aluminum and Copper: A Review" Materials 13(1): 156. DOI: 10.3390/ma13010156.
  28. [28] L. P. Pook, (1975) “Fracture mechanics analysis of the fatigue behaviour of spot welds" International Journal of Fracture 11(1): 173–176. DOI: 10.1007/BF00034726.
  29. [29] ASTM E8. ASTM E8/E8M standard test methods for tension testing of metallic materials 1. 2010. DOI: 10.1520/E0008.
  30. [30] T. Wang, T. Zhu, J. Sun, R. Wu, and M. Zhang, (2015) “Influence of rolling directions on microstructure, mechanical properties and anisotropy of Mg-5Li-1Al-0.5Y alloy" Journal of Magnesium and Alloys 3(4): 345–351. DOI: 10.1016/j.jma.2015.11.001.
  31. [31] I. Ay, S. Çelik, and ˙I. Çelik, (2000) “Comparison of properities of friction and diffusion welded joints made between the aluminium and copper bars" Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2(1): 88–102.
  32. [32] P. Kah, C. Vimalraj, J. Martikainen, and R. Suoranta, (2015) “Factors influencing Al-Cu weld properties by intermetallic compound formation" International Journal of Mechanical and Materials Engineering 10(1): 10. DOI: 10.1186/s40712-015-0037-8.
  33. [33] A. AMBROZIAK and M. KORZENIOWSKI, (2010) “Using Resistance Spot Welding for Joining Aluminium Elements in Automotive Industry" Archives of Civil and Mechanical Engineering 10(1): 5–13. DOI: 10.1016/S1644-9665(12)60126-5.
  34. [34] American Welding Society. Welding Handbook. en. London: Macmillan Education UK, 1976. DOI: 10.1007/978-1-349-03073-6.
  35. [35] H. Gaul, G. Weber, and M. Rethmeier, (2011) “Influence of HAZ cracks on fatigue resistance of resistance spot welded joints made of advanced high strength steels" Science and Technology of Welding and Joining 16(5): 440–445. DOI: 10.1179/1362171810Y.0000000031.
  36. [36] L. Chen, Y. Zhang, X. Xue, B. Wang, J. Yang, Z. Zhang, N. Tyrer, and G. C. Barber, (2022) “Investigation on shearing strength of resistance spot-welded joints of dissimilar steel plates with varying welding current and time" Journal of Materials Research and Technology 16: 1021–1028. DOI: 10.1016/j.jmrt.2021.12.079.
  37. [37] T. R. Mahmood, Q. M. Doos, and A. Al-Mukhtar, (2018) “Failure Mechanisms and Modeling of Spot Welded Joints in Low Carbon Mild Sheets Steel and High Strength Low Alloy Steel" Procedia Structural Integrity 9: 71–85. DOI: 10.1016/j.prostr.2018.06.013.
  38. [38] K. M. Daws, M. H. Al-Saadi, and I. K. A. Al-Naimi, (2023) “Investigation Parameters of Resistance Spot Welding For AA1050 Aluminum Alloy Sheets" Journal of Engineering 18(10): 1128–1141. DOI: 10.31026/j.eng.2012.10.04.
  39. [39] E. A. Fenton. “Recommended practices for resistance welding”. In: 1966.
  40. [40] U. E¸sme, (2009) “Application of Taguchi Method for the Optimization of Resistance Spot Welding Process" Arabian Journal for Science & Engineering (Springer Science & Business Media BV) 34:
  41. [41] S. M. Manladan, F. Yusof, S. Ramesh, M. Fadzil, Z. Luo, and S. Ao, (2017) “A review on resistance spot welding of aluminum alloys" International Journal of Advanced Manufacturing Technology 90(1-4): 605–634. DOI: 10.1007/s00170-016-9225-9.
  42. [42] S. K. Hussein and O. S. Barrak, (2015) “Analysis and optimization of resistance spot welding parameter of dissimilar metals mild steel and aluminum using design of experiment method" Engineering and Technology Journal 33(8): 1999–2011.
  43. [43] Y. Qin, S. Xiao, L. Lu, B. Yang, X. Li, and G. Yang, (2020) “Structural Stress–Fatigue Life Curve Improvement of Spot Welding Based on Quasi-Newton Method" Chinese Journal of Mechanical Engineering 33(1): 36. DOI: 10.1186/s10033-020-00453-3.
  44. [44] S. Kalmykova. “SIMULATION OF T-JOINTS BETWEEN RHS STEEL MEMBERS WITH OFFSET IN ABAQUS CAE”. In: 2021.
  45. [45] H. Abdulsalam, (2021) “Mesh Sensitivity Assessment on 2D and 3D Elastic Finite Element Analysis on a Compact Tension Specimen Geometry Using Abaqus/CAE Software" IOP Conference Series: Earth and Environmental Science 730(1): 012032. DOI: 10.1088/1755-1315/730/1/012032.
  46. [46] R. Beckmann, R. Mella, and M. Wenman, (2013) “Mesh and timestep sensitivity of fracture from thermal strains using peridynamics implemented in Abaqus" Computer Methods in Applied Mechanics and Engineering 263: 71–80. DOI: 10.1016/j.cma.2013.05.001.
  47. [47] ASM Handbook Committee. Fatigue and Fracture. en. ASM International, 1996. DOI: 10.31399/asm.hb.v19.9781627081931.
  48. [48] S. Mirsalehi and a. Kokabi, (2010) “Fatigue life estimation of spot welds using a crack propagation-based method with consideration of residual stresses effect" Materials Science and Engineering: A 527(23): 6359–6363. DOI: 10.1016/j.msea.2010.06.070.
  49. [49] A. M. Al-Mukhtar, (2016) “Mixed-Mode Crack Propagation in Cruciform Joint using Franc2D" Journal of Failure Analysis and Prevention: 1–7. DOI: 10.1007/s11668-016-0094-1.
  50. [50] F. Badkoobeh, A. Nouri, H. Hassannejad, and H. Mostaan, (2020) “Microstructure and mechanical properties of resistance spot welded dual-phase steels with various silicon contents" Materials Science and Engineering: A 790: 139703. DOI: 10.1016/j.msea.2020.139703.
  51. [51] X.-C. Liu, G.-P. Chen, L. Xu, C. Yu, and Z.-q. Jiang, (2021) “Seismic performance of blind-bolted joints for square steel tube columns under bending-shear" Journal of Constructional Steel Research 176: 106395. DOI: 10.1016/j.jcsr.2020.106395.
  52. [52] H. Long, Y. Hu, and X. Jin, (2018) “Stress intensity factor solutions and fatigue estimation for dual phase and low-carbon steel spot weld" Theoretical and Applied Fracture Mechanics:
  53. [53] J. Xu, Y. S. Zhang, L. Xinmin, and G. L. Chen, (2008) “Experimental investigation of fatigue performance of spot welded dual phase sheet steels" Science and Technology of Welding and Joining 13(8): 726–731. DOI: 10.1179/174329307X236841.
  54. [54] S. Daneshpour, S. Riekehr, M. Koçak, and C. H. J. Gerritsen, (2009) “Mechanical and fatigue behaviour of laser and resistance spot welds in advanced high strength steels" Science and Technology of Welding and Joining 14(1): 20–25. DOI: 10.1179/136217108X336298.
  55. [55] M. Vural, A. Akku¸s, and B. Eryürek, (2006) “Effect of welding nugget diameter on the fatigue strength of the resistance spot welded joints of different steel sheets" Journal of Materials Processing Technology 176(1- 3): 127–132. DOI: 10.1016/j.jmatprotec.2006.02.026.
  56. [56] M. H. Sar, M. H. Ridha, I. M. Husain, O. S. Barrak, and S. K. Hussein, (2022) “Influence of Welding Parameters of Resistance Spot Welding on Joining Aluminum with Copper" International Journal of Applied Mechanics and Engineering 27(2): 217–225. DOI: 10.2478/ijame-2022-0029.
  57. [57] I. K. Al Naimi, M. H. Al Saadi, K. M. Daws, and N. Bay, (2015) “Influence of surface pretreatment in resistance spot welding of aluminum AA1050" Production & Manufacturing Research 3(1): 185–200. DOI: 10.1080/21693277.2015.1030795.
  58. [58] I. M. Husain, M. L. Saad, O. S. Barrak, S. K. Hussain, and M. M. Hamzah, (2021) “Shear force analysis of Resistance Spot Welding of Similar and Dissimilar Material: copper and carbon steel" IOP Conference Series: Materials Science and Engineering 1105(1): 012055. DOI: 10.1088/1757-899X/1105/1/012055.