- [1] L. Shi and X. Di, (2023) “A recognition method of learning behaviour in English online classroom based on feature data mining" International Journal of Reasoningbased Intelligent Systems 15: 8–14. DOI: 10.1504/IJRIS.2023.128375.
- [2] T. Guo, X. Bai, X. Tian, S. Firmin, and F. Xia, (2022) “Educational anomaly analytics: features, methods, and challenges" Frontiers in big Data 4: 811840. DOI: 10.3389/fdata.2021.811840.
- [3] Y. Liu, H. Chen, and A. Thoff, (2020) “Research on evaluation method of students’ classroom performance based on artificial intelligence" International Journal of Continuing Engineering Education and Life Long Learning 30: 476–491. DOI: 10.1504/IJCEELL.2020. 110925.
- [4] Y. Xie, S. Zhang, and Y. Liu, (2021) “Abnormal Behavior Recognition in Classroom Pose Estimation of College Students Based on Spatiotemporal Representation Learning" Traitement du Signal 38: 89–95. DOI: 10.18280/ ts.380109.
- [5] X. Zhang, (2022) “A Gaussian High-Dimensional Random Matrix-Based Method for Detecting Abnormal Student Behaviour in Chinese Language Classrooms" Mathematical Problems in Engineering 2022: 6957097. DOI: 10.1155/2022/6957097.
- [6] S. Zhang, H. Liu, C. Sun, X. Wu, P. Wen, F. Yu, and J. Zhang, (2023) “MSTA-SlowFast: A student behavior detector for classroom environments" Sensors 23: 5205. DOI: 10.3390/s23115205.
- [7] M. A. E. Abbas and S. Hameed, (2022) “A Systematic Review of Deep Learning Based Online Exam Proctoring Systems for Abnormal Student Behaviour Detection" International Journal of Scientific Research in Science, Engineering and Technology 9: 192. DOI: 10.32628/IJSRSET229428.
- [8] C. Pabba and P. Kumar, (2022) “An intelligent system for monitoring students’ engagement in large classroom teaching through facial expression recognition" Expert Systems 39: e12839. DOI: 10.1111/exsy.12839.
- [9] J. Zhang, Z. Zhang, L. Guan, and H. Hu. Research on Classroom Behavior Recognition and Detection Method Based on Deep Learning. 2024. DOI: 10.1109/cvidl62147.2024.10604092.
- [10] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. “You only look once: Unified, real-time object detection”. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015, 779–788. DOI: 10.48550/arXiv.1506.02640.
- [11] J. Redmon and A. Farhadi. “YOLO9000: better, faster, stronger”. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017, 7263–7271. DOI: 10.1109/CVPR.2017.690.
- [12] L. Tang, T. Xie, Y. Yang, and H. Wang, (2022) “Classroom behavior detection based on improved YOLOv5 algorithm combining multi-scale feature fusion and attention mechanism" Applied Sciences 12: 6790. DOI: 10.3390/app12136790.
- [13] J. Wen, Y. Qin, and S. Hu. “Abnormal behavior identification of examinees based on improved YOLOv5”. In: International Conference on Computer Graphics, Artificial Intelligence, and Data Processing (ICCAID 2022). 12604. 2022, 946–953. DOI: 10.1117/12.2674630.
- [14] Z. Zhang, D. Ao, L. Zhou, X. Yuan, and M. Luo. “Laboratory behavior detection method based on improved Yolov5 model”. In: 2021 International Conference on Cyber-Physical Social Intelligence (ICCSI). 2021, 1–6. DOI: 10.1109/ICCSI53130.2021.9736251.
- [15] F. Lei, F. Tang, and S. Li, (2022) “Underwater target detection algorithm based on improved YOLOv5" Journal of Marine Science and Engineering 10: 310. DOI: 10.3390/jmse10030310.
- [16] R. Girshick, J. Donahue, T. Darrell, and J. Malik. “Rich feature hierarchies for accurate object detection and semantic segmentation”. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2014, 580–587. DOI: 10.1109/CVPR.2014.81.
- [17] Q. Zheng, M. Yang, X. Tian, X. Wang, and D. Wang, (2020) “Rethinking the Role of Activation Functions in Deep Convolutional Neural Networks for Image Classification" engineering letters 28: 80.
- [18] J. Bai, J. Dai, Z. Wang, and S. Yang, (2022) “A detection method of the rescue targets in the marine casualty based on improved YOLOv5s" Frontiers in Neurorobotics 16: DOI: 10.3389/fnbot.2022.1053124.
- [19] C. Chen, F. Wang, Y. Cai, S. Yi, and B. Zhang, (2023) “An improved YOLOv5s-based Agaricus bisporus detection algorithm" Agronomy 13: 1871. DOI: 10.3390/ agronomy13071871.
- [20] M. Gong, D. Wang, X. Zhao, H. Guo, D. Luo, and M. Song. “A review of non-maximum suppression algorithms for deep learning target detection”. In: Seventh Symposium on Novel Photoelectronic Detection Technology and Applications. 11763. SPIE, 2021, 821–828.
- [21] H. Li, J. Li, H. Wei, Z. Liu, Z. Zhan, and Q. Ren, (2022) “Slim-neck by GSConv: A better design paradigm of detector architectures for autonomous vehicles" arXiv: DOI: 10.48550/arXiv.2206.02424.
- [22] Q. Hou, D. Zhou, and J. Feng. “Coordinate attention for efficient mobile network design”. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021, 13713–13722. DOI: 10.1109/CVPR46437.2021.01350.
- [23] Z. Zheng, P. Wang, W. Liu, J. Li, R. Ye, and D. Ren. “Distance-IoU loss: Faster and better learning for bounding box regression”. In: Proceedings of the AAAI conference on artificial intelligence. 34. 07. 2020, 12993–13000. DOI: 10.1609/aaai.v34i07.6999.
- [24] Y.-F. Zhang, W. Ren, Z. Zhang, Z. Jia, L. Wang, and T. Tan, (2022) “Focal and efficient IOU loss for accurate bounding box regression" Neurocomputing 506: 146– 157. DOI: 10.48550/arXiv.2101.08158.
- [25] Z. Y. Khan and Z. Niu, (2021) “CNN with depthwise separable convolutions and combined kernels for rating prediction" Expert Systems with Applications 170: 114528. DOI: 10.1016/j.eswa.2020.114528.
- [26] H. Srivastava and K. Sarawadekar. “A depthwise separable convolution architecture for CNN accelerator”. In: 2020 IEEE Applied Signal Processing Conference (ASPCON). 2020, 1–5. DOI: 10.1109/ASPCON49795.2020.9276672.
- [27] R. Girshick. “Fast r-cnn”. In: Proceedings of the IEEE international conference on computer vision. 2015, 1440– 1448. DOI: 10.1109/ICCV.2015.1691.
- [28] S. Ren, K. He, R. Girshick, and J. Sun, (2016) “Faster R-CNN: Towards real-time object detection with region proposal networks" IEEE transactions on pattern analysis and machine intelligence 39: 1137–1149. DOI: 10.1109/TPAMI.2016.2577031.
- [29] J. Redmon and A. Farhadi, (2018) “YOLOv3: An Incremental Improvement" ArXiv abs/1804.02767: DOI: 10.48550/arXiv.1804.02767.
- [30] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg. “Ssd: Single shot multibox detector”. In: Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14. 2016, 21–37. DOI: 10.48550/arXiv.1512.02325.