Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

LiWei HuThis email address is being protected from spambots. You need JavaScript enabled to view it.

Hunan Communication Polytechnic, Changsha, 410132, China


 

 

Received: May 25, 2024
Accepted: September 1, 2024
Publication Date: November 4, 2024

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202508_28(8).0008  


Ordinary concrete is well-documented in the construction of ordinary buildings, but this type of concrete cannot be used for special structures such as dams, silos, and skyscrapers, due to low compressive strength (CS), durability, and workability. The solution to this problem is to use high-performance concrete (HPC). To improve the mechanical properties has been added some additives, such as water-cement ratio, fly ash, and blast furnace slag. However, achieving a suitable mix design of HPC is complex, time, and energy-consuming. For this reason, the usage of machine learning (ML) makes it easier to obtain the acceptable mix design saving time and money. The artificial neural network (ANN) model is the subset of ML, which the experimental tasks can replace. One of these neural networks is the radial basis function (RBF), with one input layer, one or more hidden layers, and one output layer. In addition, RBF is combined with the Sine Cosine Algorithm (SCA) and the African Vulture Optimization Algorithm (AVOA) to obtain the desired results close to the experimental values. At the end of this article, it is seen that the SCA algorithm can combined better with the RBF model and achieve favorable and more satisfactory results with more accuracy and fewer errors.


Keywords: Compressive Strength; High-performance concrete; Radial Basis Function; Sine Cosine Algorithm; African Vulture Optimization algorithm


  1. [1] H.-G. NiandJ.-Z. Wang, (2000) “Prediction of compres sive strength of concrete by neural networks" Cement and Concrete Research 30: 1245–1250. DOI: 10.1016/S0008-8846(00)00345-8.
  2. [2] A. Ahmed, (2013) “ACI Concrete Terminology" ACI CT-13:
  3. [3] J.-C. Morel, A. Pkla, and P. Walker, (2007) “Compres sive strength testing of compressed earth blocks" Con struction and Building materials 21: 303–309. DOI: 10.1016/j.conbuildmat.2005.08.021.
  4. [4] A. T. Amlashi, E. M. Golafshani, S. A. Ebrahimi, and A. Behnood, (2023) “Estimation of the compres sive strength of green concretes containing rice husk ash: a comparison of different machine learning approaches" European Journal of Environmental and Civil En gineering 27: 961–983. DOI: 10.1080/19648189.2022.2068657.
  5. [5] I. Mironyuk, T. Tatarchuk, N. Paliychuk, I. Heviuk, A. Horpynko, O. Yarema, and I. Mykytyn, (2021) “Ef fect of surface-modified fly ash on compressive strength of cement mortar" Materials Today: Proceedings 35: 534–537. DOI: 10.1016/j.matpr.2019.10.016.
  6. [6] P. Turgut and F. Demir, (2019) “The influence of dis posed fly ash on Ca2+ leaching and physico-mechanical properties of mortars" Journal of Cleaner Production 226: 270–281. DOI: 10.1016/j.jclepro.2019.04.105.
  7. [7] Y.-F. Yang, G.-S. Gai, Z.-F. Cai, and Q.-R. Chen, (2006) “Surface modification of purified fly ash and application in polymer" Journal of Hazardous Materials 133: 276282. DOI: 10.1016/j.jhazmat.2005.10.028.
  8. [8] Y. Dong, L. Pei, J. Fu, Y. Yang, T. Liu, H. Liang, and H. Yang, (2022) “Investigating the mechanical proper ties and durability of metakaolin-incorporated mortar by different curing methods" Materials 15: 2035. DOI: 10.3390/ma15062035.
  9. [9] M.Z.Lakhssassi, S. Alehyen, M. E. Alouani, and M. Taibi, (2019) “The effect of aggressive environments on the properties of a low calcium fly ash based geopolymer and the ordinary Portland cement pastes" Materials Today: Proceedings 13: 1169–1177. DOI: 10.1016/j.matpr.2019.04.085.
  10. [10] C. K. Goh, S. E. Valavan, T. K. Low, and L. H. Tang, (2016) “Effects of different surface modification and con tents on municipal solid waste incineration fly ash/epoxy composites" Waste management 58: 309–315. DOI: 10.1016/j.wasman.2016.05.027.
  11. [11] F. Bellmann and J. Stark, (2009) “Activation of blast furnace slag by a new method" Cement and Concrete Research 39: 644–650. DOI: 10.1016/j.cemconres.2009.05.012.
  12. [12] A.K.Jain, J. Mao, and K. M.Mohiuddin, (1996) “Arti f icial neural networks: A tutorial" Computer 29: 31–44. DOI: 10.1109/2.485891.
  13. [13] E. M. Golafshani, A. Behnood, and M. Arashpour, (2020) “Predicting the compressive strength of normal and High-Performance Concretes using ANN and ANFIS hybridized with Grey Wolf Optimizer" Construction and Building Materials 232: 117266. DOI: 10.1016/j.conbuildmat.2019.117266.
  14. [14] M.R.Parvaiz, S. Mohanty, S. K. Nayak, and P. A. Ma hanwar, (2011) “Effect of surface modification of fly ash on the mechanical, thermal, electrical and morphological properties of polyetheretherketone composites" Materi als Science and Engineering: A 528: 4277–4286. DOI: 10.1016/j.msea.2011.01.026.
  15. [15] F. Khademi, S. M. Jamal, N. Deshpande, and S. Londhe, (2016) “Predicting strength of recycled aggre gate concrete using artificial neural network, adaptive neuro-fuzzy inference system and multiple linear regres sion" International Journal of Sustainable Built En vironment 5: 355–369. DOI: 10.1016/j.ijsbe.2016.09.003.
  16. [16] Y. Aggarwal and P. Aggarwal, (2011) “Prediction of compressive strength of SCC containing bottom ash using artificial neural networks" International Journal of Mathematical and Computational Sciences 5: 762 767. DOI: 10.5281/zenodo.1329661.
  17. [17] P.-C. Aıtcin, (2000) “Cements of yesterday and today: Concrete of tomorrow" Cement and Concrete research 30: 1349–1359. DOI: 10.1016/S0008-8846(00)00365-3.
  18. [18] M.Moranville-Regourd. Cements made from blastfur nace slag. Elsevier, 1998, 637–678. DOI: 10.1016/B978-075066256-7/50023-0.
  19. [19] M.Moranville-Regourd. Cements made from blastfur nace slag. Elsevier, 1998, 637–678. DOI: 10.1016/B978-075066256-7/50023-0.
  20. [20] S. Joseph and Ö. Cizer, (2022) “Hydration of hybrid cements at low temperatures: A study on portland cement blast furnace slag—Na2SO4" Materials 15: 1914. DOI: 10.3390/ma15051914.
  21. [21] I. B. Topcu and M. Sarıdemir, (2008) “Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic" Computa tional Materials Science 41: 305–311. DOI: 10.1016/j.commatsci.2007.04.009.
  22. [22] S.-C. Lee, (2003) “Prediction of concrete strength using artificial neural networks" Engineering structures 25: 849–857. DOI: 10.1016/S0141-0296(03)00004-X.
  23. [23] H. Naderpour, A. H. Rafiean, and P. Fakharian, (2018) “Compressive strength prediction of environmen tally friendly concrete using artificial neural networks" Journal of building engineering 16: 213–219. DOI: 10.1016/j.jobe.2018.01.007.
  24. [24] A. T. A. Dantas, M. B. Leite, and K. de Jesus Naga hama, (2013) “Prediction of compressive strength of con crete containing construction and demolition waste using artificial neural networks" Construction and Building Materials 38: 717–722. DOI: 10.1016/j.conbuildmat.2012.09.026.
  25. [25] A. Khajeh, S. A. Ebrahimi, H. MolaAbasi, R. J. Chenari, and M. Payan, (2021) “Effect of EPS beads in lightening a typical zeolite and cement-treated sand" Bul letin of Engineering Geology and the Environment 80: 8615–8632. DOI: 10.1007/s10064-021-02458-1.
  26. [26] P. G. Asteris, M. Apostolopoulou, A. D. Skentou, and A. Moropoulou, (2019) “Application of artificial neural networks for the prediction of the compressive strength of cement-based mortars" Computers and Concrete 24: 329–345. DOI: 10.12989/cac.2019.24.4.329.
  27. [27] M.-Y. Cheng, J.-S. Chou, A. F. V. Roy, and Y.-W. Wu, (2012) “High-performance concrete compressive strength prediction using time-weighted evolutionary fuzzy sup port vector machines inference model" Automation in Construction 28: 106–115. DOI: https://doi.org/10.1016/j.autcon.2012.07.004.
  28. [28] Z.-H. Duan, S.-C. Kou, and C.-S. Poon, (2013) “Pre diction of compressive strength of recycled aggregate con crete using artificial neural networks" Construction and Building Materials 40: 1200–1206. DOI: 10.1016/j.conbuildmat.2012.04.063.
  29. [29] A. Jula, E. Sundararajan, and Z. Othman, (2014) “Cloud computing service composition: A systematic lit erature review" Expert systems with applications 41: 3809–3824. DOI: 10.1016/j.eswa.2013.12.017.
  30. [30] J. Tang, C. Deng, and G.-B. Huang, (2015) “Extreme learning machine for multilayer perceptron" IEEE trans actions on neural networks and learning systems 27: 809–821. DOI: 10.1109/TNNLS.2015.2424995.
  31. [31] F. Demir, (2008) “Prediction of elastic modulus of normal and high strength concrete by artificial neural networks" Construction and building Materials 22: 1428–1435. DOI: 10.1016/j.conbuildmat.2007.04.004.
  32. [32] S.Mirjalili, (2016) “SCA: a sine cosine algorithm for solv ing optimization problems" Knowledge-based systems 96: 120–133. DOI: 10.1016/j.knosys.2015.12.022.
  33. [33] L. Abualigah and A. Diabat, (2021) “Advances in sine cosine algorithm: a comprehensive survey" Artificial Intelligence Review 54: 2567–2608. DOI: 10.1007/s10462-020-09909-3.
  34. [34] S. M. Mousavi, P. Aminian, A. H. Gandomi, A. H. Alavi, and H. Bolandi, (2012) “A new predictive model for compressive strength of HPC using gene expression programming" Advances in Engineering Software 45: 105–114. DOI: 10.1016/j.advengsoft.2011.09.014.
  35. [35] A. H.GandomiandA.H.Alavi, (2012) “A new multi gene genetic programming approach to nonlinear system modeling. Part I: materials and structural engineering problems" Neural Computing and Applications 21: 171–187. DOI: 10.1007/s00521-011-0734-z.
  36. [36] P. G. Asteris, A. D. Skentou, A. Bardhan, P. Samui, and K. Pilakoutas, (2021) “Predicting concrete com pressive strength using hybrid ensembling of surrogate machine learning models" Cement and Concrete Re search 145: 106449. DOI: 10.1016/j.cemconres.2021.106449.
  37. [37] J.-S. Chou and A.-D. Pham, (2013) “Enhanced artificial intelligence for ensemble approach to predicting high per formance concrete compressive strength" Construction and Building Materials 49: 554–563. DOI: 10.1016/j.conbuildmat.2013.08.078.
  38. [38] N.-H. Nguyen, T. P. Vo, S. Lee, and P. G. Asteris, (2021) “Heuristic algorithm-based semi-empirical formu las for estimating the compressive strength of the nor mal and high performance concrete" Construction and Building Materials 304: 124467. DOI: 10.1016/j.conbuildmat.2021.124467.
  39. [39] D. V. Dao, H. Adeli, H.-B. Ly, L. M. Le, V. M. Le, T.-T. Le, and B. T. Pham, (2020) “A sensitivity and ro bustness analysis of GPR and ANN for high-performance concrete compressive strength prediction using a Monte Carlo simulation" Sustainability 12: 830. DOI: 10.3390/su12030830.
  40. [40] S. Lee, N.-H. Nguyen, A. Karamanli, J. Lee, and T. P. Vo, (2023) “Super learner machine-learning algorithms for compressive strength prediction of high performance concrete" Structural Concrete 24: 2208–2228. DOI: 10.1002/suco.202200424.
  41. [41] J.-S. Chou, C.-K. Chiu, M. Farfoura, and I. Al Taharwa, (2011) “Optimizing the prediction accuracy of concrete compressive strength based on a comparison of data-mining techniques" Journal of Computing in Civil Engineering 25: 242–253. DOI: 10.1061/(ASCE)CP.1943-5487.0000088.
  42. [42] M. R. Akbarzadeh, H. Ghafourian, A. Anvari, R. Pourhanasa, and M. L. Nehdi, (2023) “Estimating com pressive strength of concrete using neural electromagnetic f ield optimization" Materials 16: 4200. DOI: 10.3390/ma16114200.


Latest Articles

    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.