Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Aziz Amari1This email address is being protected from spambots. You need JavaScript enabled to view it., Rachida Belloute2, and Mohammed Diouri2

1LCS Laboratory, Physics Department, Faculty of Sciences, Mohammed V University in Rabat, Ibn Battouta Street, Rabat 10000, Morocco

2Biology Department, Faculty of sciences, Moulay Ismaïl University, Zitoune Street, Meknes 11201, Morocco


 

 

Received: February 29, 2024
Accepted: August 16, 2024
Publication Date: November 4, 2024

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202508_28(8).0007  


In this paper, a portable electronic nose system was developed and evaluated for its performance in rating pizza toppings, as compared to subjective evaluation of quality. In this study, four pizza-topping types were prepared: P1: 100% minced beef with Edam cheese, P2: 50% minced beef and 50% minced Kadid (air-dried salted meat) with Edam cheese, P3: 100% minced Kadid with Edam cheese, and P4: 100% minced beef with parmesan cheese. Kadid was similar to plain meat with respect to perception and preference. The experiment was performed on 101 prepared pizza-topping samples. Our study objective was to differentiate between various pizza toppings using the developed portable E-nose. Additionally, we aimed to highlight the impact of lemon smell as an olfactory disturbance in this differentiation. For this purpose, several procedures for feature selection, machine learning techniques were evaluated. Firstly, a Principal Component Analysis (PCA) showed a modest grouping of pizza toppings except for P4 samples (based on parmesan cheese) which were more distinct from others. By applying One-way ANOVA feature selection before performing PCA, Cluster Analysis (CA) and Support Vector Machines (SVMs), a significant improvement was observed in the identification of the four pizza toppings. Finally, the results from CA reveal that the presence of an olfactory disturbance caused by lemon scent significantly alters the order in which toppings are identified by the portable E-nose, particularly affecting cheese recognition.


Keywords: E-nose; Gas sensors; Pizza; Umami; Data analysis; Machine learning; Feature selection; ANOVA; PCA; Cluster analysis; SVMs


  1. [1] D.-W. Sun and T. Brosnan, (2003) “Pizza Quality Eval uation using Computer Vision––Part 2: Pizza Topping Analysis" Journal of Food Engineering 57: 91–95. DOI: 10.1016/S0260-8774(02)00276-5.
  2. [2] D.-W. Sun, (2000) “Inspecting Pizza Topping Percentage and Distribution by a Computer Vision Method" Jour nal of Food Engineering 44: 245–249. DOI: 10.1016/S0260-8774(00)00024-8.
  3. [3] P.SinghandG.Goyal,(2011)“FunctionalityofPizzaIn gredients" British Food Journal 113: 1322–1338. DOI: 10.1108/00070701111179960.
  4. [4] C.-J. Du and D.-W. Sun, (2008) “Multi-classification of Pizza using Computer Vision and Support Vector Ma chine" Journal of Food Engineering 86: 234–242. DOI: 10.1016/j.jfoodeng.2007.10.001.
  5. [5] M.Baietto and A. Wilson, (2015) “Electronic-nose Ap plications for Fruit Identification, Ripeness and Quality Grading" Sensors (Basel, Switzerland) 15: 899–931. DOI: 10.3390/s150100899.
  6. [6] X.Tang,D.-W.Sun,andC.P.O’Donnell,(1999)“Ama chine Vision System for Quality Inspection of Pizza" Irish Journal of Agricultiral and Food Research 38(1): 175.
  7. [7] J. W. Gardner and P. N. Bartlett, (1994) “A Brief His tory of Electronic Noses" Sensors and Actuators B: Chemical 18(1): 210–211. DOI: 10.1016/0925-4005(94) 87085-3.
  8. [8] J. Brunink, C. Di Natale, F. Bungaro, F. Davide, A. D’Amico, R. Paolesse, T. Boschi, M. Faccio, and F. G., (1996) “The Application of Metalloporphyrins as coating Material for Quartz Microbalance-based Chemical Sen sors" Analytica Chimica Acta 325(1-2): 53–64. DOI: 10.1016/0003-2670(96)00017-7.
  9. [9] V. Messina, P. Dominguez, A. Sancho, N. Walsöe de Reca, F. Carrari, and G. Grigioni, (2012) “Tomato Quality during Short-Term Storage Assessed by Colour and Electronic Nose" International Journal of Electro chemistry 2012: 1–7. DOI: 10.1155/2012/687429.
  10. [10] A. Kumar, M.Castro, and J.-F. Feller, (2023) “Review on Sensor Array-Based Analytical Technologies for Qual ity Control of Food and Beverages" Sensors 23(8): DOI: 10.3390/s23084017.
  11. [11] K.K.Pulluri and V. N. Kumar, (2022) “Development of an Integrated Soft E-Nose for Food Quality Assessment" IEEE Sensors Journal 22(15): 15111–15122. DOI: 10.1109/JSEN.2022.3182480.
  12. [12] M. M. Ali, N. Hashim, S. A. Aziz, and O. Lasekan, (2020) “Principles and Recent Advances in Electronic Nose for Quality Inspection of Agricultural and Food Products" Trends in Food Science & Technology 99: 1–10. DOI: 10.1016/j.tifs.2020.02.028.
  13. [13] J. Tan and J. Xu, (2020) “Applications of Electronic Nose (e-nose) and Electronic Tongue (e-tongue) in Food Quality related Properties Determination: A Review" Artificial Intelligence in Agriculture 4: 104–115. DOI: 10.1016/j.aiia.2020.06.003.
  14. [14] M.Peris and L. Escuder-Gilabert, (2009) “A 21st Cen tury Technique for Food Control: Electronic Noses" Ana lytica chimica acta 638: 1–15. DOI: 10.1016/j.aca.2009.02.009.
  15. [15] M.SonandT. H.Park, (2018) “The Bioelectronic Nose and Tongue using Olfactory and Taste Receptors: Ana lytical Tools for Food Quality and Safety Assessment" Biotechnology Advances 36(2): 371–379. DOI: 10.1016/j.biotechadv.2017.12.017.
  16. [16] J. Vestergaard, M. Martens, and P. Turkki, (2007) “Ap plication of an Electronic Nose System for Prediction of Sensory Quality Changes of a Meat Product (pizza top ping) during Storage" LWT- Food Science and Tech nology 40: 1095–1101. DOI: 10.1016/j.lwt.2006.06.008.
  17. [17] H. Gan, Y. Che Man, C. Tan, I. NorAini, and S. Nazimah, (2005) “Characterisation of Vegetable Oils by Surface Acoustic Wave Sensing Electronic Nose" Food Chemistry 89(4): 507–518. DOI: 10.1016/j.foodchem.2004.03.005.
  18. [18] H.Yu, J. Wang, H. Xiao, and M. Liu, (2009) “Quality Grade Identification of Green Tea using the Eigenvalues of PCA based on the E-nose Signals" Sensors and Ac tuators B: Chemical 140(2): 378–382. DOI: 10.1016/j.snb.2009.05.008.
  19. [19] V. Musatov, V. Sysoev, M. Sommer, and I. Kiselev, (2010) “Assessment of Meat Freshness with Metal Ox ide Sensor Microarray Electronic Nose: A Practical Ap proach" Sensors and Actuators B: Chemical 144: 99 103. DOI: 10.1016/j.snb.2009.10.040.
  20. [20] P. E. S. Munekata, S. Finardi, C. K. de Souza, C. Mein ert, M. Pateiro, T. G. Hoffmann, R. Domínguez, S. L. Bertoli, M. Kumar, and J. M. Lorenzo, (2023) “Appli cations of Electronic Nose, Electronic Eye and Electronic Tongue in Quality, Safety and Shelf Life of Meat and Meat Products: A Review" Sensors 23(2): DOI: 10.3390/s23020672.
  21. [21] S. Panigrahi, S. Balasubramanian, H. Gu, C. Logue, and M. Marchello, (2006) “Neural-Network-Integrated Electronic Nose System for Identification of Spoiled Beef" LWT-FoodScience and Technology 39(2): 135–145. DOI: 10.1016/j.lwt.2005.01.002.
  22. [22] D. S. Anisimov, A. A. Abramov, V. P. Gaidarzhi, D. S. Kaplun, E. V. Agina, and S. A. Ponomarenko, (2023) “Food Freshness Measurements and Product Distinguish ing by a Portable Electronic Nose Based on Organic Field Effect Transistors" ACS Omega 8(5): 4649–4654. DOI: 10.1021/acsomega.2c06386.
  23. [23] P. Verma and R. D. S. Yadava, (2015) “Polymer Se lection for SAW Sensor Array based Electronic Noses by Fuzzy c-means Clustering of Partition Coefficients: Model Studies on Detection of Freshness and Spoilage of Milk and Fish" Sensors and Actuators B-chemical 209: 751–769. DOI: 10.1016/J.SNB.2014.11.149.
  24. [24] A. Amari, E. B. Noureddine, N. EL Bari, E. Llobet, X. Correig, and B. Bouchikhi, (2009) “Potential Appli cation of the Electronic Nose for Shelf-life Determination of Raw Milk and Red Meat" AIP Conference Proceed ings 1137: 457–460. DOI: 10.1063/1.3156581.
  25. [25] A. Ali, A. S. Mansol, A. A. Khan, K. Muthoosamy, and Y. Siddiqui, (2023) “Electronic Nose as a Tool for Early Detection of Diseases and Quality Monitoring in Fresh Postharvest Produce: A Comprehensive Review" Comprehensive Reviews in Food Science and Food Safety 22(3): 2408–2432. DOI: 10.1111/1541-4337. 13151.
  26. [26] C. Li, P. Heinemann, and R. Sherry, (2007) “Neural Network and Bayesian Network Fusion Models to Fuse Electronic Nose and Surface Acoustic Wave Sensor Data for Apple Defect Detection" Sensors and Actuators B: Chemical 125(1): 301–310. DOI: 10.1016/j.snb.2007.02.027.
  27. [27] L. Torri, N. Sinelli, and S. Limbo, (2010) “Shelf Life Evaluation of Fresh-cut Pineapple by using an Electronic Nose" Postharvest biology and technology 56(3): 239–245. DOI: 10.1016/j.postharvbio.2010.01.012.
  28. [28] H.Zhang, M. Chang, W. J., and S. Ye, (2008) “Evalua tion of each Quality Indices using an Electronic Nose by MLR, QPSTandBPNetwork" Sensors and Actuators B: Chemical 134: 332–338. DOI: 10.1016/j.snb.2008.05.008.
  29. [29] Y. Li, K. Yang, Z. He, Z. Liu, J. Lu, D. Zhao, J. Zheng, and M. C. Qian, (2023) “Can Electronic Nose Replace Human Nose?-An Investigation of E-Nose Sen sor Responses to Volatile Compounds in Alcoholic Bever ages" ACS Omega 8(18): 16356–16363. DOI: 10.1021/acsomega.3c01140.
  30. [30] D. Cozzolino, W. Cynkar, B. Dambergs, and P. Smith, (2010) “Two Dimensional Correlation Analysis of the Ef fect of Temperature on the Fingerprint of Wines Analysed by Mass Spectrometry Electronic Nose" Sensors and Actuators B: Chemical 145: 628–634. DOI: 10.1016/j.snb.2010.01.003.
  31. [31] J. Ragazzo-Sanchez, P. Chalier, D. Chevalier, M. Calderon-Santoyo, and C. Ghommidh, (2008) “Iden tification of Different Alcoholic Beverages by Electronic Nose coupled to GC" Sensors and Actuators B: Chem ical 134(1): 43–48. DOI: 10.1016/j.snb.2008.04.006.
  32. [32] Z. Haddi, M. Boughrini, S. Ihlou, A. Amari, S. Mabrouk, H. Barhoumi, A. Maaref, N. E. Bari, E. Llobet, N. Jaffrezic-Renault, and B. Bouchikhi. “Geo graphical Classification of Virgin Olive Oils by Com bining the Electronic Nose and Tongue”. In: SEN SORS, 2012 IEEE. 2012, 1–4. DOI: 10.1109/ICSENS.2012.6411502.
  33. [33] M. Drake, P. Gerard, J. Kleinhenz, and W. Harper, (2003) “Application of an Electronic Nose to Correlate with Descriptive Sensory Analysis of Aged Cheddar Cheese" LWT- Food Science and Technology 36: 13 20. DOI: 10.1016/S0023-6438(02)00216-5.
  34. [34] S. Ampuero and J. Bosset, (2003) “The Electronic Nose Applied to Dairy Products: A Review" Sensors and Ac tuators B: Chemical 94(1): 1–12. DOI: 10.1016/S0925-4005(03)00321-6.
  35. [35] H.Karami,M.Rasekh,andE.Mirzaee-Ghaleh,(2021) “Identification of Olfactory Characteristics of Edible Oil During Storage Period using Metal Oxide Semiconductor Sensor Signals and ANN Methods" Journal of Food Processing and Preservation 45(10): e15749. DOI: 10.1111/jfpp.15749.
  36. [36] T. Majchrzak, W. Wojnowski, T. Dymerski, J. G˛ ebicki, andJ. Namie´ snik, (2018) “Electronic Noses in Classifica tion and Quality Control of Edible Oils: A Review" Food Chemistry 246: 192–201. DOI: 10.1016/j.foodchem.2017.11.013.
  37. [37] S. Kang, Q. Zhang, Z. Li, C. Yin, N. Feng, and Y. Shi, (2023) “Determination of the Quality of Tea from Dif ferent Picking Periods: An Adaptive Pooling Attention Mechanism coupled with an Electronic Nose" Posthar vest Biology and Technology 197: 112214. DOI: 10.1016/j.postharvbio.2022.112214.
  38. [38] B. Tudu, A. Jana, A. Metla, D. Ghosh, N. Bhat tacharyya, and R. Bandyopadhyay, (2009) “Electronic Nose for Black Tea Quality Evaluation by an Incremental RBF Network" Sensors and Actuators B: Chemical 138(1): 90–95. DOI: 10.1016/j.snb.2009.02.025.
  39. [39] A. Wintjens, K. Hintzen, S. Engelen, T. Lubbers, P. Savelkoul, G. Wesseling, J. van der Palen, and N. Bouvy, (2021) “Applying the Electronic Nose for Pre operative SARS-CoV-2 Screening" Surgical Endoscopy 35(12): 6671–6678. DOI: 10.1007/s00464-020-08169-0.
  40. [40] I. Essid, H. Ben Ismail, S. Bel Hadj Ahmed, R. Ghedamsi, andM.Hassouna,(2007)“Characterization and technological Properties of Staphylococcus Xylosus Strains Isolated from a Tunisian Traditional Salted Meat" Meat Science 77(2): 204–212. DOI: 10.1016/j.meatsci.2007.03.003.
  41. [41] A. Amari, N. El Bari, and B. Bouchikhi, (2009) “Con ception and Development of a Portable Electronic Nose System for Classification of Raw Milk using Principal Component Analysis Approach" Sensors & Transduc ers Journal 102(3): 33–44.
  42. [42] Z. Haddi, A. Amari, A. Ali, N. EL Bari, H. Barhoumi, A. Maaref, N. Jaffrezic-Renault, and B. Bouchikhi, (2011) “Discrimination and Identification of Geographical Origin Virgin Olive Oil by an E-nose based on MOS Sensors and Pattern Recognition Techniques" Procedia Engineering 25: 1137–1140. DOI: 10.1016/j.proeng. 2011.12.280.
  43. [43] Z. Haddi, H. Alami, N. El Bari, M. Tounsi, H. Barhoumi, A. Maaref, N. Jaffrezic-Renault, and B. Bouchikhi, (2013) “Electronic Nose and Tongue Com bination for Improved Classification of Moroccan Virgin Olive Oil Profiles" Food Research International 54(2): 1488–1498. DOI: 10.1016/j.foodres.2013.09.036.
  44. [44] Z. Haddi, S. Mabrouk, M. Bougrini, K. Tahri, K. Sghaier, H. Barhoumi, N. El Bari, A. Maaref, N. Jaffrezic-Renault, and B. Bouchikhi, (2014) “E-Nose and e-Tongue Combination for Improved Recognition of Fruit Juice Samples" Food Chemistry 150: 246–253. DOI: 10.6001016/j.foodchem.2013.10.105.
  45. [45] A. David, M. Banzi, D. Cuartielles, and T. Lgoe. “Ar duino: an open electronics prototyping platform”. In: Conference on human factors in computing systems San Jose, California, USA. 2007.
  46. [46] Z. Haddi, A. Amari, H. Alami, N. EL Bari, E. Llobet, and B. Bouchikhi, (2011) “A Portable Electronic Nose System for the Identification of Cannabis-Based Drugs" SensorsandActuatorsBChemical155:456–463. DOI: 10.1016/j.snb.2010.12.047.
  47. [47] A. Feyzioglu and Y. S. Taspinar, (2023) “Beef Quality Classification with Reduced E-Nose Data Features Ac cording to Beef Cut Types" Sensors 23(4): DOI: 10.3390/s23042222.
  48. [48] N.Gayatri, S. Nickolas, and A. V. Reddy. “ANOVA Discriminant Analysis for Features Selected through Decision Tree Induction Method”. In: Global Trends in Computing and Communication Systems. Ed. by P. V. Kr ishna, M. R. Babu, and E. Ariwa. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, 61–70.
  49. [49] O.Gualdron, J. Brezmes, E. Llobet, A. Amari, X. Vi lanova, B. Bouchikhi, and X. Correig, (2007) “Variable Selection for Support Vector Machine based Multisensor Systems" Sensors and Actuators B: Chemical 122(1): 259–268. DOI: 10.1016/j.snb.2006.05.029.
  50. [50] S. Holmin, P. Spångeus, C. Krantz-Rülcker, and F. Winquist, (2001) “Compression of Electronic Tongue Data based on Voltammetry- A Comparative Study" Sen sors and Actuators B: Chemical 76(1): 455–464. DOI: 10.1016/S0925-4005(01)00585-8.
  51. [51] S. Protasov, A. M. Khan, K. Sozykin, and M. Ahmad, (2018) “Using Deep Features for Video Scene Detection and Annotation" Signal, Image and VideoProcessing 12: 991–999. DOI: 10.1007/s11760-018-1244-6.
  52. [52] X. Zhou, L. Nian, F. Tang, Y. Zhao, K. Qin, L. Zhang, and D. Li, (2019) “A Deep Manifold Learning Approach for Spatial-Spectral Classification with limited labeled training samples" Neurocomputing 331: 138–149. DOI: 10.1016/J.NEUCOM.2018.11.047.
  53. [53] M.Pardo and G.Sberveglieri, (2007) “Comparing the Performance of Different Features in Sensor Arrays" Sen sors and Actuators B: Chemical 123: 437–443. DOI: 10.1016/j.snb.2006.09.041.
  54. [54] U. Depczynski, V. J. Frost, and K. Molt, (2000) “Ge netic Algorithms Applied to the Selection of Factors in Principal Component Regression" Analytica Chimica Acta 420(2): 217–227. DOI: 10.1016/S0003-2670(00)00893-X.
  55. [55] J. M. Gutiérrez, Z. Haddi, A. Amari, B. Bouchikhi, A. Mimendia, X. Cetó, and M. del Valle, (2013) “Hy brid Electronic Tongue based on Multisensor Data Fusion for Discrimination of Beers" Sensors and Actuators B: Chemical 177: 989–996. DOI: 10.1016/j.snb.2012.11.110.
  56. [56] M. Castro, B. Kumar, J. Feller, Z. Haddi, A. Amari, and B. Bouchikhi, (2011) “Novel E-nose for the Dis crimination of Volatile Organic Biomarkers with an Ar ray of Carbon Nanotubes (CNT) Conductive Polymer Nanocomposites (CPC) Sensors" Sensors and Actua tors B: Chemical (1): 213–219. DOI: 10.1016/j.snb.2011.06.073.
  57. [57] E. Llobet, J. Brezmes, X. Vilanova, J. E. Sueiras, and X. Correig, (1997) “Qualitative and Quantitative Analy sis of Volatile Organic Compounds using Transient and Steady-state Responses of a Thick Film Tin Oxide Gas Sensor Array" Sensors and Actuators B: Chemical 41(1): 13–21. DOI: 10.1016/S0925-4005(97)80272-9.
  58. [58] J. W. Gardner, (1991) “Detection of Vapours and Odours from aMultisensor Array using Pattern Recognition: Part 1. Principal Component and Cluster Analysis" Sensors and Actuators B: Chemical 4(1): 109–115. DOI: 10. 1016/0925-4005(91)80185-M.
  59. [59] B. Everitt, (1980) “Cluster Analysis." Quality & Quan tity 14(1): DOI: 10.1007/BF00154794.
  60. [60] M. H. Aghdaie, S. H. Zolfani, and E. K. Zavadskas, (2013) “A Hybrid Approach for Market Segmentation and Market Segment Evaluation and Selection: An Integra tion of Data Mining and MADM" Transformations in Business & Economics 12(2B): 431–459.
  61. [61] S. Kiani, S. Minaei, and M. Ghasemi-Varnamkhasti, (2017) “Integration of Computer Vision and Electronic Nose as Non-destructive Systems for Saffron Adulteration Detection" Computers and Electronics in Agricul ture 141: 46–53. DOI: 10.1016/j.compag.2017.06.018.
  62. [62] X. Gu, Y. Sun, K. Tu, and L.-q. Pan, (2017) “Evalua tion of Lipid Oxidation of Chinese-style Sausage during Processing and Storage based on Electronic Nose" Meat Science 133: 1–9. DOI: 10.1016/j.meatsci.2017.05.017.
  63. [63] R. Upadhyay, S. Sehwag, and H. N. Mishra, (2017) “Frying Disposal Time of Sunflower Oil using Hybrid Electronic Nose Fuzzy Logic Approach" LWT- Food Science and Technology 78: 332–339. DOI: 10.1016/j.lwt.2017.01.001.
  64. [64] A. K. Jain, (2010) “Data Clustering: 50 Years Beyond K-means" Pattern Recognition Letters 31(8): 651–666. DOI: 10.1016/j.patrec.2009.09.011.
  65. [65] V. Vapnik. The Nature of Statistical Learning Theory. Springer: New York, 2000. DOI: 10.1007/978-1-4757 2440-0.
  66. [66] A. Amari, N. E. Barbri, E. Llobet, N. E. Bari, X. Cor reig, and B. Bouchikhi, (2006) “Monitoring the Fresh ness of Moroccan Sardines with a Neural-Network Based Electronic Nose" Sensors 6(10): 1209–1223. DOI: 10.3390/s6101209.
  67. [67] E. Mayoraz and E. Alpaydın. “Support Vector Ma chines for Multi-class Classification”. In: Engineering Applications of Bio-Inspired Artificial Neural Networks. Ed. by J. Mira and J. V. Sánchez-Andrés. Berlin, Hei delberg: Springer Berlin Heidelberg, 1999, 833–842. DOI: 10.1007/BFb0100551.
  68. [68] C.-W.HsuandC.-J.Lin,(2002)“AComparisonofMeth ods for Multiclass Support Vector Machines" IEEE trans actions on Neural Networks 13(2): 415–425. DOI: 10.1007/978-3-540-88458-3_68.
  69. [69] M.O’Connell, G. Valdora, G. Peltzer, and R. Martín Negri, (2001) “A Practical Approach for Fish Freshness Determinations using a Portable Electronic Nose" Sen sors and Actuators B: Chemical 80(2): 149–154. DOI: 10.1016/S0925-4005(01)00904-2.
  70. [70] S. Yamaguchi and K. Ninomiya, (2000) “Umami and Food Palatability" The Journal of Nutrition 130(4): 921S–926S. DOI: 10.1093/jn/130.4.921S.
  71. [71] K. Ninomiya, (1998) “Naturel Occurrence" Food Re views International, Special Issue: Umami 14(2-3): 177–211. DOI: 10.1080/87559129809541157.
  72. [72] F. Bellisle, (1999) “Glutamate and the Umami Taste: Sen sory, Metabolic, Nutritional and Behavioural Consider ations. A Review of the Literature Published in the Last 10 Years" Neuroscience & Biobehavioral Reviews 23(3): 423–438. DOI: 10.1016/S0149-7634(98)00043-8.
  73. [73] T. Nishimura, S. Goto, K. Miura, Y. Takakura, A. S. Egusa, and H. Wakabayashi, (2016) “Umami Com pounds Enhance the Intensity of Retronasal Sensation of Aromas from Model Chicken Soups" Food Chemistry 196: 577–583. DOI: 10.1016/j.foodchem.2015.09.036.
  74. [74] E. T. Rolls, (2009) “Functional Neuroimaging of Umami Taste: What Makes Umami Pleasant?" The American Journal of Clinical Nutrition 90(3): 804S–813S. DOI: 10.3945/ajcn.2009.27462R.
  75. [75] J. Gardner, B. P., and E. Hines, (2005) “Enhancing Electronic Nose Performance by Sensor Selection using a NewInteger-based Genetic Algorithm Approach" Sen sors and Actuators B: Chemical 106(1): 114–121. DOI: 10.1016/j.snb.2004.05.043.
  76. [76] R. Leardi, S. M.B., and R. Pell, (2002) “Variable Selec tion for Multivariate Calibration using a Genetic Algo rithm: Prediction of Additive Concentrations in Polymer Films from Fourier Transform-Infrared Spectral Data" Analytica Chimica Acta 461(2): 189–200. DOI: 10.1016/S0003-2670(02)00272-6.
  77. [77] J. W. Gardner and P. N. Bartlett. Electronic Noses: Prin ciples and Applications. Oxford university press, 1999. DOI: 10.1093/oso/9780198559559.001.0001.
  78. [78] S.Yamaguchi,(1998)“Basic Properties of Umami and its Effects on Food Flavor" Food Reviews International 14(2-3): 139–176. DOI: 10.1080/87559129809541156.
  79. [79] T. D. Linscott and J. Lim, (2016) “Retronasal Odor Enhancement by Salty and Umami Tastes" Food Quality and Preference 48: 1–10. DOI: 10.1016/j.foodqual.2015.08.004.
  80. [80] M. Guggenmos, C. Daughney, B. Jackson, and U. Morgenstern, (2011) “Regional-scale Identifica tion of Groundwater-Surface Water Interaction using Hydrochemistry and Multivariate Statistical Methods, Wairarapa Valley, New Zealand" Hydrology and Earth System Sciences Discussions 8: DOI: 10.5194/hessd-8-6443-2011.
  81. [81] B. Rachida and M. Diouri, (2016) “Perception and Pref erence of Umami-Taste-Containing Foods based on Olfac tion and (or) Gustation" Recent Research in Science and Technology 8: 24–29. DOI: 10.19071/rrst.2016.v8.3028.
  82. [82] P.Morquecho-Campos,K.deGraaf,andS.Boesveldt, (2020) “Smelling our Appetite? The Influence of Food Odors on Congruent Appetite, Food Preferences and In take" Food Quality and Preference 85: 103959. DOI: 10.1016/j.foodqual.2020.103959.


Latest Articles

    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.