- [1] A.Ajanovic, M. Sayer, and R. Haas, (2022) “The eco nomics and the environmental benignity of different colors of hydrogen" Int. J. HydrogenEnergy47:24136–24154. DOI: 10.1016/j.ijhydene.2022.02.094.
- [2] Z. Dong, J. Yang, L. Yu, R. Daiyan, and R. Amal, (2022) “A green hydrogen credit framework for interna tional green hydrogen trading towards a carbon neutral future" Int. J. Hydrogen Energy 47: 728–734. DOI: 10.1016/j.ijhydene.2021.10.084.
- [3] C.Liu, Q. Zhang, and Z. Zou, (2023) “Recent advances in designing ZnIn2S4-based heterostructured photocata lysts for hydrogen evolution" J. Mater. Sci. Technol 139: 167–188. DOI: 10.1016/j.jmst.2022.08.030.
- [4] Y.Liu,J.Li,B.Zhou,X.Li,H.Chen,Q.Chen,Z.Wang, L. Li, J. Wang, and W. Cai, (2011) “Efficient electricity production and simultaneously wastewater treatment via a high-performance photocatalytic fuel cell" Water Res 45: 3991–3998. DOI: 10.1016/j.watres.2011.05.004.
- [5] H.Pan, W.Liao, N. Sun, M. Murugananthan, and Y. Zhang, (2018) “Highly efficient and visible light respon sive heterojunction composites as dual photoelectrodes for photocatalytic fuel cell" Catalysts 8: DOI: 10.3390/catal8010030.
- [6] H.Abd-Rabboh,M.Benaissa,M.Hamdy,M.Ahmed, and M. Glal, (2021) “Synthesis of an efficient, and re cyclable mesoporous BiVO4/TiO2 direct Z-scheme het erojunction by sonochemical route for photocatalytic hy drogen production and photodegradation of rhodamine B dye in the visible region" Opt. Mater. (Amst 114: DOI: 10.1016/j.optmat.2020.110761.
- [7] X. Zheng, Y. Song, Y. Liu, Y. Yang, D. Wu, Y. Yang, S. Feng, J. Li, W. Liu, Y. Shen, and X. Tian, (2023) “ZnIn2S4-based photocatalysts for photocatalytic hydrogen evolution via water splitting" Coord. Chem. Rev 475: DOI: 10.1016/j.ccr.2022.214898.
- [8] G. Yang, H. Ding, D. Chen, J. Feng, Q. Hao, and Y. Zhu, (2018) “Construction of urchin-like ZnIn2S4-Au TiO2 heterostructure with enhanced activity for photocat alytic hydrogen evolution" Appl. Catal. B Environ 234: 260–267. DOI: 10.1016/j.apcatb.2018.04.038.
- [9] X. Xie, P. Ge, R. Xue, H. Lv, W. Xue, and E. Liu, (2023) “Enhanced photocatalytic H2 evolution and anti photocorrosion of sulfide photocatalyst by improving sur face reaction: A review" Int. J. Hydrogen Energy 48: 24264–24284. DOI: 10.1016/j.ijhydene.2023.03.193.
- [10] D. Pattanayak, D. Pal, J. Mishra, and C. Thakur, (2023) “Noble metal–free doped graphitic carbon nitride (g-C3N4) for efficient photodegradation of antibiotics: progress, limitations, and future directions" Environ. Sci. Pollut. Res 30: 25546–25558. DOI: 10.1007/s11356 022-20170-9.
- [11] S. Zondag, D. Mazzarella, and T. Noël, (2023) “Scale Up of Photochemical Reactions: Transitioning from Lab Scale to Industrial Production, Annu" Rev. Chem. Biomol. Eng 14: 283–300. DOI: 10.1146/annurev-chembioeng-101121-074313.
- [12] Y. Sofi’i, E. Siswanto, T. Winarto, and I. Wardana, (2020) “The role of activated carbon in boosting the activ ity of clitoria ternatea powder photocatalyst for hydrogen production" Int. J. Hydrogen Energy 45: 22613–22628. DOI: 10.1016/j.ijhydene.2020.05.103.
- [13] Y. Sofi’i, E. Siswanto, and I. Winarto, (2020) “Devel opment Of Bamboo Charcoal And Fragaria Vesca Powder Photocatalysts In Hydrogen Production Via Water Split ting" Eastern-European J. Enterp. Technol 6: 80–92. DOI: 10.15587/1729-4061.2020.213277.
- [14] Z. Wang, S. Hu, F. Deng, H. Shi, X. Li, S. Zhang, J. Zou, and X. Luo, (2024) “Boosting exciton-based en ergy transfer for singlet oxygen generation in type-II heterojunction, Sep" Purif. Technol 330: 125287. DOI: 10.1016/j.seppur.2023.125287.
- [15] N. Satrio, S. Winarto, and I. Wardana, (2020) “The role of turmeric and bicnat on hydrogen production in porous tofu waste suspension electrolysis, Biomass Con vers" Biorefinery: DOI: 10.1007/s13399-020-00803-0.
- [16] N.Satrio, S. Winarto, and I. Wardana, (2020) “Hydro gen production from instant noodle wastewater by organic electrocatalyst coated on PVC surface" Int. J. Hydrogen Energy 45: 12859–12873. DOI: 10.1016/j.ijhydene.2020.03.002.
- [17] W. Satrio, S. Winarto, and I. Wardana, (2020) “The effect of curcumin coated electrode on hydrogen production through water electrolysis" E3S Web Conf 181: DOI: 10.1051/e3sconf/202018101003.
- [18] F.Yuliansyah, N.Hamidi,andM.N.Sasongko,(2024) “Pyrolysis of corn cob biomass toward gasenous products on small capacity reactor" International Journal of Mechanical Engineering Technologies and Applica tions 5(1): 87–95. DOI: 10.1016/j.ijhydene.2020.11.211.
- [19] F.Yuliansyah, N.Hamidi,andM.N.Sasongko,(2024) “Pyrolysis of corn cob biomass toward gasenous products on small capacity reactor" International Journal of Mechanical Engineering Technologies and Appli cations 5(1): 87–95. DOI: 10.21776/MECHTA.2024.005.01.9.
- [20] P. Purnami, N. Satrio, S. Supriyono, and I. Wardana, (2022) “Digitally controlled organic electrocatalyst for water electrolysis" Int. J. Hydrogen Energy 47: 11877 11893. DOI: 10.1016/j.ijhydene.2022.01.203.
- [21] P. Purnami, W. winarto, Y. Sofi’i, W. Nugroho, and I. Wardana, (2023) “The enhancement of magnetic field assisted water electrolysis hydrogen production from the compact disc recordable waste polycarbonate layer" Int. J. Hydrogen Energy: DOI: 10.1016/j.ijhydene.2023.01.329.
- [22] L.Lencastre Novaes, A. Jozala, A. Lopes, V. Carvalho Santos-Ebinuma, P. Mazzola, and A. Junior, (2016) “Stability, purification, and applications of bromelain: A review, Biotechnol" Prog 32: 5–13. DOI: 10.1002/btpr.2190.
- [23] V. Kumar, B. Mangla, S. Javed, W. Ahsan, P. Kumar, V. Garg, and H. Dureja, (2023) “Bromelain: a review of its mechanisms, pharmacological effects and potential applications" Food Funct 14: 8101–8128. DOI: 10.1039/d3fo01060k.
- [24] S. Rukzon, P. Chindaprasirt, and R. Mahachai, (2009) “Effect of grinding on chemical and physical properties of rice husk ash" Int. J. Miner. Metall. Mater 16: 242–247. DOI: 10.1016/S1674-4799(09)60041-8.
- [25] D. Zhang, (2004) “Processing of advanced materials us ing high-energy mechanical milling, Prog" Mater. Sci 49: 537–560. DOI: 10.1016/S0079-6425(03)00034-3.
- [26] Y. Keriti, R. Brahimi, Y. Gabes, S. Kaci, and M. Trari, (2020) “Physical and photo-electrochemical properties of CuOthin film grown on µc-Si:H/glass" Application to solar energy conversion, Sol. Energy 206: 787–792. DOI: 10.1016/j.solener.2020.05.072.
- [27] V. Quaresima and M. Ferrari, (2019) “A mini-review on functional near-infrared spectroscopy (fNIRS): Where do we stand, and where should we go?" Photonics 6: 87. DOI: 10.3390/photonics6030087.
- [28] K. Böer and U. Pohl, (2023) “Semiconductor physics" Semiconductor Physics: DOI: 10.1007/978-3-031-18286-0.
- [29] L.Yang,N.Feng,Q.Wang,Y.Chu,J.Xu,andF.Deng, (2020) “Surface Water Loading on Titanium Dioxide Modulates Photocatalytic Water Splitting" Cell Reports Phys. Sci 1: DOI: 10.1016/j.xcrp.2019.100013.
- [30] D. Utami, R. Mulyani, and D. Prajitno, (2021) “The Effect of Solution Treatment on Mechanical Properties and Micro Structure of Zr-10Ti-Sn Alloy for Screw Dental Implant Application" Int. J. Mech. Eng. Technol. Appl 2: 91. DOI: 10.21776/mechta.2021.002.02.2.
- [31] S. Fitriani, P. Setyarini, and V. Risonarta, (2020) “The Influence of Homogenization on Corrosion Rate of Zinc as Sacrificial Anode for API 5L X65 Steel" Int. J. Mech. Eng. Technol. Appl 1: 7. DOI: 10.21776/mechta.2020. 001.01.2.
- [32] X. Jin, Q. Zhao, J. Miao, F. Guo, and M. Gao, (2024) “Single and binary adsorption of azo blue and mordant black 17 with vermiculites functionalized by amphoteric gemini surfactants: Performance and mechanism" Col loids Surfaces C Environ. Asp 2: 100028. DOI: 10.1016/J.COLSUC.2024.100028.
- [33] J. Park and K. Natesan, (1993) “Oxidation of copper and electronic transport in copper oxides, Oxid" Met 39: 411–435. DOI: 10.1007/BF00664664.
- [34] Y. Zhang, S. Zhao, W. Weber, K. Nordlund, F. Granberg, and F. Djurabekova, (2017) “Atomic-level heterogeneity and defect dynamics in concentrated solid solution alloys" Curr. Opin. Solid State Mater. Sci 21: 221–237. DOI: 10.1016/j.cossms.2017.02.002.
- [35] S. Mishra and M. Ahmaruzzaman, (2022) “CuO and CuO-based nanocomposites: Synthesis and applications in environment and energy" Sustain. Mater. Technol 33: DOI: 10.1016/j.susmat.2022.e00463.
- [36] Y. Li, W. Zhang, J. Niu, and Y. Chen, (2012) “Mecha nism of photogenerated reactive oxygen species and cor relation with the antibacterial properties of engineered metal-oxide nanoparticles" ACS Nano 6: 5164–5173. DOI: 10.1021/nn300934k.
- [37] S. Yang, S. Chen, J. Fan, T. Shang, D. Huang, and G. Li, (2019) “Novel mesoporous organosilica nanoparticles with ferrocene group for efficient removal of contaminants from wastewater" J. Colloid Interface Sci 554: 565–571. DOI: 10.1016/j.jcis.2019.07.037.
- [38] L. Kao, W. Kan, R. Martin-Aranda, M. Guerrero Perez, M. Bañares, andS.Liou, (2020) “SiO2 supported niobium oxides with active acid sites for the catalytic ac etalization of glycerol" Catal. Today 356: 80–87. DOI: 10.1016/j.cattod.2019.08.007.
- [39] Y. K. Sofi’i, E. Siswanto, I. N. G. Wardana, et al. “Hy drogen production by photocatalysis method of glu tamic acid and activated carbon”. In: E3S Web of Con ferences. 181. EDP Sciences. 2020, 01009. DOI: 10.1051/e3sconf/202018101009.
- [40] J. Sans, L. Soler, M. Domínguez, and J. Llorca, (2018) “Transforming a Compact Disk into a Simple and Cheap Photocatalytic Nanoreactor" ACS Omega 3: 6971–6975. DOI: 10.1021/acsomega.8b00739.