Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

NMDwidiani1, NPG Suardana1This email address is being protected from spambots. You need JavaScript enabled to view it., Willy Satrio Nugroho2, IGN Nitya Santhiarsa1, IGK Puja, WNSeptiadi3, IGK Puja, WN Septiadi1, AA Adhi Suryawan1, and ING Wardana2

1Department of Mechanical Engineering, Udayana University, Kuta Selatan, Kabupaten Badung, Bali 80361

2Department of Mechanical Engineering, Brawijaya University, Lowokwaru, Malang, Jawa Timur 65145

3Department of Mechanical Engineering, Sanata Dharma University, Paingan, Maguwoharjo, Depok, Yogyakarta 55282


 

 

Received: August 17, 2024
Accepted: October 16, 2024
Publication Date: January 13, 2025

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202510_28(10).0001  


Hydrogen production by photocatalysis has a potential to be fully green green hydrogen production process. However, metal photocatalyst require costly noble metal to performing well. Several organic photocatalysts have been made but not every organic photocatalysts synthesized with fully green process. This study provides biomassa based organic catalyst from rice Husk Ash (RHA) synthesized using enzymatic organic acid from Pineapple Peel juice. The immersion on Bromelain containing pineapple Peel juice divides the RHA into sunked Carbon nanomaterials (SCNM) and floating CNM (FCNM). The photocatalytic hydrogen production, photocurrent test, UV-Vis spectroscopy, FTIR, and SEM, and EDX characterization were performed. The results reveal the CuO and Si content determine the physical and Chemical properties of each CNM. FCNM has the best photocatalytic activity due to the spread CuO and Si content while SCNM is more concentrated. The FCNM produces 1132.1391 MoL.L−1 H2 , SCNM 754.5295Mol.L−1 H2, RHA 377.8021 Mol.L−1 H2, and Without CNM 188.4670 Mol.L−1 H2. Therefore, the photocatalytic activity of CNM depends on the distribution of photoactive content such as CuO and Si.

 


Keywords: Organic photocatalyst; Photo active material; Rice husk ash; Pineapple peel juice


  1. [1] A.Ajanovic, M. Sayer, and R. Haas, (2022) “The eco nomics and the environmental benignity of different colors of hydrogen" Int. J. HydrogenEnergy47:24136–24154. DOI: 10.1016/j.ijhydene.2022.02.094.
  2. [2] Z. Dong, J. Yang, L. Yu, R. Daiyan, and R. Amal, (2022) “A green hydrogen credit framework for interna tional green hydrogen trading towards a carbon neutral future" Int. J. Hydrogen Energy 47: 728–734. DOI: 10.1016/j.ijhydene.2021.10.084.
  3. [3] C.Liu, Q. Zhang, and Z. Zou, (2023) “Recent advances in designing ZnIn2S4-based heterostructured photocata lysts for hydrogen evolution" J. Mater. Sci. Technol 139: 167–188. DOI: 10.1016/j.jmst.2022.08.030.
  4. [4] Y.Liu,J.Li,B.Zhou,X.Li,H.Chen,Q.Chen,Z.Wang, L. Li, J. Wang, and W. Cai, (2011) “Efficient electricity production and simultaneously wastewater treatment via a high-performance photocatalytic fuel cell" Water Res 45: 3991–3998. DOI: 10.1016/j.watres.2011.05.004.
  5. [5] H.Pan, W.Liao, N. Sun, M. Murugananthan, and Y. Zhang, (2018) “Highly efficient and visible light respon sive heterojunction composites as dual photoelectrodes for photocatalytic fuel cell" Catalysts 8: DOI: 10.3390/catal8010030.
  6. [6] H.Abd-Rabboh,M.Benaissa,M.Hamdy,M.Ahmed, and M. Glal, (2021) “Synthesis of an efficient, and re cyclable mesoporous BiVO4/TiO2 direct Z-scheme het erojunction by sonochemical route for photocatalytic hy drogen production and photodegradation of rhodamine B dye in the visible region" Opt. Mater. (Amst 114: DOI: 10.1016/j.optmat.2020.110761.
  7. [7] X. Zheng, Y. Song, Y. Liu, Y. Yang, D. Wu, Y. Yang, S. Feng, J. Li, W. Liu, Y. Shen, and X. Tian, (2023) “ZnIn2S4-based photocatalysts for photocatalytic hydrogen evolution via water splitting" Coord. Chem. Rev 475: DOI: 10.1016/j.ccr.2022.214898.
  8. [8] G. Yang, H. Ding, D. Chen, J. Feng, Q. Hao, and Y. Zhu, (2018) “Construction of urchin-like ZnIn2S4-Au TiO2 heterostructure with enhanced activity for photocat alytic hydrogen evolution" Appl. Catal. B Environ 234: 260–267. DOI: 10.1016/j.apcatb.2018.04.038.
  9. [9] X. Xie, P. Ge, R. Xue, H. Lv, W. Xue, and E. Liu, (2023) “Enhanced photocatalytic H2 evolution and anti photocorrosion of sulfide photocatalyst by improving sur face reaction: A review" Int. J. Hydrogen Energy 48: 24264–24284. DOI: 10.1016/j.ijhydene.2023.03.193.
  10. [10] D. Pattanayak, D. Pal, J. Mishra, and C. Thakur, (2023) “Noble metal–free doped graphitic carbon nitride (g-C3N4) for efficient photodegradation of antibiotics: progress, limitations, and future directions" Environ. Sci. Pollut. Res 30: 25546–25558. DOI: 10.1007/s11356 022-20170-9.
  11. [11] S. Zondag, D. Mazzarella, and T. Noël, (2023) “Scale Up of Photochemical Reactions: Transitioning from Lab Scale to Industrial Production, Annu" Rev. Chem. Biomol. Eng 14: 283–300. DOI: 10.1146/annurev-chembioeng-101121-074313.
  12. [12] Y. Sofi’i, E. Siswanto, T. Winarto, and I. Wardana, (2020) “The role of activated carbon in boosting the activ ity of clitoria ternatea powder photocatalyst for hydrogen production" Int. J. Hydrogen Energy 45: 22613–22628. DOI: 10.1016/j.ijhydene.2020.05.103.
  13. [13] Y. Sofi’i, E. Siswanto, and I. Winarto, (2020) “Devel opment Of Bamboo Charcoal And Fragaria Vesca Powder Photocatalysts In Hydrogen Production Via Water Split ting" Eastern-European J. Enterp. Technol 6: 80–92. DOI: 10.15587/1729-4061.2020.213277.
  14. [14] Z. Wang, S. Hu, F. Deng, H. Shi, X. Li, S. Zhang, J. Zou, and X. Luo, (2024) “Boosting exciton-based en ergy transfer for singlet oxygen generation in type-II heterojunction, Sep" Purif. Technol 330: 125287. DOI: 10.1016/j.seppur.2023.125287.
  15. [15] N. Satrio, S. Winarto, and I. Wardana, (2020) “The role of turmeric and bicnat on hydrogen production in porous tofu waste suspension electrolysis, Biomass Con vers" Biorefinery: DOI: 10.1007/s13399-020-00803-0.
  16. [16] N.Satrio, S. Winarto, and I. Wardana, (2020) “Hydro gen production from instant noodle wastewater by organic electrocatalyst coated on PVC surface" Int. J. Hydrogen Energy 45: 12859–12873. DOI: 10.1016/j.ijhydene.2020.03.002.
  17. [17] W. Satrio, S. Winarto, and I. Wardana, (2020) “The effect of curcumin coated electrode on hydrogen production through water electrolysis" E3S Web Conf 181: DOI: 10.1051/e3sconf/202018101003.
  18. [18] F.Yuliansyah, N.Hamidi,andM.N.Sasongko,(2024) “Pyrolysis of corn cob biomass toward gasenous products on small capacity reactor" International Journal of Mechanical Engineering Technologies and Applica tions 5(1): 87–95. DOI: 10.1016/j.ijhydene.2020.11.211.
  19. [19] F.Yuliansyah, N.Hamidi,andM.N.Sasongko,(2024) “Pyrolysis of corn cob biomass toward gasenous products on small capacity reactor" International Journal of Mechanical Engineering Technologies and Appli cations 5(1): 87–95. DOI: 10.21776/MECHTA.2024.005.01.9.
  20. [20] P. Purnami, N. Satrio, S. Supriyono, and I. Wardana, (2022) “Digitally controlled organic electrocatalyst for water electrolysis" Int. J. Hydrogen Energy 47: 11877 11893. DOI: 10.1016/j.ijhydene.2022.01.203.
  21. [21] P. Purnami, W. winarto, Y. Sofi’i, W. Nugroho, and I. Wardana, (2023) “The enhancement of magnetic field assisted water electrolysis hydrogen production from the compact disc recordable waste polycarbonate layer" Int. J. Hydrogen Energy: DOI: 10.1016/j.ijhydene.2023.01.329.
  22. [22] L.Lencastre Novaes, A. Jozala, A. Lopes, V. Carvalho Santos-Ebinuma, P. Mazzola, and A. Junior, (2016) “Stability, purification, and applications of bromelain: A review, Biotechnol" Prog 32: 5–13. DOI: 10.1002/btpr.2190.
  23. [23] V. Kumar, B. Mangla, S. Javed, W. Ahsan, P. Kumar, V. Garg, and H. Dureja, (2023) “Bromelain: a review of its mechanisms, pharmacological effects and potential applications" Food Funct 14: 8101–8128. DOI: 10.1039/d3fo01060k.
  24. [24] S. Rukzon, P. Chindaprasirt, and R. Mahachai, (2009) “Effect of grinding on chemical and physical properties of rice husk ash" Int. J. Miner. Metall. Mater 16: 242–247. DOI: 10.1016/S1674-4799(09)60041-8.
  25. [25] D. Zhang, (2004) “Processing of advanced materials us ing high-energy mechanical milling, Prog" Mater. Sci 49: 537–560. DOI: 10.1016/S0079-6425(03)00034-3.
  26. [26] Y. Keriti, R. Brahimi, Y. Gabes, S. Kaci, and M. Trari, (2020) “Physical and photo-electrochemical properties of CuOthin film grown on µc-Si:H/glass" Application to solar energy conversion, Sol. Energy 206: 787–792. DOI: 10.1016/j.solener.2020.05.072.
  27. [27] V. Quaresima and M. Ferrari, (2019) “A mini-review on functional near-infrared spectroscopy (fNIRS): Where do we stand, and where should we go?" Photonics 6: 87. DOI: 10.3390/photonics6030087.
  28. [28] K. Böer and U. Pohl, (2023) “Semiconductor physics" Semiconductor Physics: DOI: 10.1007/978-3-031-18286-0.
  29. [29] L.Yang,N.Feng,Q.Wang,Y.Chu,J.Xu,andF.Deng, (2020) “Surface Water Loading on Titanium Dioxide Modulates Photocatalytic Water Splitting" Cell Reports Phys. Sci 1: DOI: 10.1016/j.xcrp.2019.100013.
  30. [30] D. Utami, R. Mulyani, and D. Prajitno, (2021) “The Effect of Solution Treatment on Mechanical Properties and Micro Structure of Zr-10Ti-Sn Alloy for Screw Dental Implant Application" Int. J. Mech. Eng. Technol. Appl 2: 91. DOI: 10.21776/mechta.2021.002.02.2.
  31. [31] S. Fitriani, P. Setyarini, and V. Risonarta, (2020) “The Influence of Homogenization on Corrosion Rate of Zinc as Sacrificial Anode for API 5L X65 Steel" Int. J. Mech. Eng. Technol. Appl 1: 7. DOI: 10.21776/mechta.2020. 001.01.2.
  32. [32] X. Jin, Q. Zhao, J. Miao, F. Guo, and M. Gao, (2024) “Single and binary adsorption of azo blue and mordant black 17 with vermiculites functionalized by amphoteric gemini surfactants: Performance and mechanism" Col loids Surfaces C Environ. Asp 2: 100028. DOI: 10.1016/J.COLSUC.2024.100028.
  33. [33] J. Park and K. Natesan, (1993) “Oxidation of copper and electronic transport in copper oxides, Oxid" Met 39: 411–435. DOI: 10.1007/BF00664664.
  34. [34] Y. Zhang, S. Zhao, W. Weber, K. Nordlund, F. Granberg, and F. Djurabekova, (2017) “Atomic-level heterogeneity and defect dynamics in concentrated solid solution alloys" Curr. Opin. Solid State Mater. Sci 21: 221–237. DOI: 10.1016/j.cossms.2017.02.002.
  35. [35] S. Mishra and M. Ahmaruzzaman, (2022) “CuO and CuO-based nanocomposites: Synthesis and applications in environment and energy" Sustain. Mater. Technol 33: DOI: 10.1016/j.susmat.2022.e00463.
  36. [36] Y. Li, W. Zhang, J. Niu, and Y. Chen, (2012) “Mecha nism of photogenerated reactive oxygen species and cor relation with the antibacterial properties of engineered metal-oxide nanoparticles" ACS Nano 6: 5164–5173. DOI: 10.1021/nn300934k.
  37. [37] S. Yang, S. Chen, J. Fan, T. Shang, D. Huang, and G. Li, (2019) “Novel mesoporous organosilica nanoparticles with ferrocene group for efficient removal of contaminants from wastewater" J. Colloid Interface Sci 554: 565–571. DOI: 10.1016/j.jcis.2019.07.037.
  38. [38] L. Kao, W. Kan, R. Martin-Aranda, M. Guerrero Perez, M. Bañares, andS.Liou, (2020) “SiO2 supported niobium oxides with active acid sites for the catalytic ac etalization of glycerol" Catal. Today 356: 80–87. DOI: 10.1016/j.cattod.2019.08.007.
  39. [39] Y. K. Sofi’i, E. Siswanto, I. N. G. Wardana, et al. “Hy drogen production by photocatalysis method of glu tamic acid and activated carbon”. In: E3S Web of Con ferences. 181. EDP Sciences. 2020, 01009. DOI: 10.1051/e3sconf/202018101009.
  40. [40] J. Sans, L. Soler, M. Domínguez, and J. Llorca, (2018) “Transforming a Compact Disk into a Simple and Cheap Photocatalytic Nanoreactor" ACS Omega 3: 6971–6975. DOI: 10.1021/acsomega.8b00739.


    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.