Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Malik Ahmad Al-Natour1, Mohammad Faiyaz Anwar2, Shah Alam Khan3, and Mohammad Changez4This email address is being protected from spambots. You need JavaScript enabled to view it.

1College of Health Sciences, University of Buraimi, Oman

2Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India

3Department of Pharmaceutical Chemistry, College of Pharmacy, National University of Science and Technology, Muscat, Oman

4Research, Innovation, and Entrepreneurship Unit, University of Buraimi, Oman


 

 

Received: March 7, 2024
Accepted: October 14, 2024
Publication Date: January 13, 2025

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202510_28(10).0006  


Ocimumsanctum (OS) Linn, is a medicinal herb that has been used in traditional medicine science ancient time. It contains an array of complex and diverse biologically active phytochemical constituents that can act as a reducing and stabilizing agent for synthesizing metal nanoparticles (NPs). Herein, OS aqueous leaf extract was used to synthesize eco-friendly round and rod-shaped Ag NPs. The synthesized spherical and rod-shaped AgNPswereanalyzed by indirect methods by analysis of plasma band (UV-vis spectra) and thin films X-ray diffraction (XRD) peaks. Whereas, for direct methods, morphologies of synthesized Ag NPs were recoded using HR-TEM. AgNPsdemonstrated dose-dependent antibacterial efficacy against bacteria ( S. aureus). The MIC and MBCvalues of spherical Ag NPs against 106CFU/mL of S. aureus were found to be 2.74 and 3.80 µg/mL, respectively. However, MIC and MBC values of Ag nano-rod were observed at 7.20µ g/mL and 13µ g/mL, respectively. SEM micrographs indicate that morphologies of spherical shape and nano-rod Ag NPs treated S. aureus showed breakdown, merge, and elongated morphologies with the presence of Ag NPs (nano-rod) inside of the S. aureus.


Keywords: Green Chemistry, Ocimum sanctum, Staphylococcus aureus, Silver Nanoparticles, Transmission electron microscope, XRD


  1. [1] M.Masalha, I. Borovok, R. Schreiber, Y. Aronowitz, and G. Cohen, (2001) “Analysis of Transcription of the Staphylococcus aureus Aerobic Class Ib and Anaerobic Class III Ribonucleotide Reductase Genes in Response to Oxygen" Journal of Bacteriology 183: 7260. DOI: 10.1128/jb.183.24.7260-7272.2001.
  2. [2] T. Xue, X. Zhang, H. Sun, and B. Sun, (2013) “ArtR, a novel sRNA of Staphylococcus aureus, regulates-toxin expression by targeting the 5 UTR of sarT mRNA" Med ical Microbiology and Immunology 203: 1. DOI: 10.1007/s00430-013-0307-0.
  3. [3] J.A.Lindsay,(2010)“Genomicvariationandevolution of Staphylococcus aureus" International Journal of Med ical Microbiology 300: 98–103. DOI: 10.1016/j.ijmm.2009.08.013.
  4. [4] J. R. Fitzgerald, (2014) “Evolution of Staphylococcus aureus during human colonization and infection" In fection, Genetics and Evolution 21: 542–547. DOI: 10.1016/j.meegid.2013.04.020.
  5. [5] S. Y. C. Tong, J. S. Davis, E. Eichenberger, T. L. Hol land, and V. G. Fowler, (2015) “Staphylococcus aureus Infections: Epidemiology, Pathophysiology, Clinical Man ifestations, and Management" Clinical Microbiology Reviews 28: 603–661. DOI: 10.1128/cmr.00134-14.
  6. [6] A. C. Senok, H. Verstraelen, M. Temmerman, and G. A. Botta, (2009) “Probiotics for the treatment of bac terial vaginosis" Cochrane Database of Systematic Reviews (4):
  7. [7] T. J. Foster, (2002) “Staphylococcus aureus" Molecular medical microbiology: 839–888.
  8. [8] J.Haaber, J. R. Penadés, and H. Ingmer, (2017) “Trans fer of antibiotic resistance in Staphylococcus aureus" Trends in microbiology 25(11): 893–905.
  9. [9] J. J. Kelly, B. E. Dalesandro, Z. Liu, M. D. Chordia, G. M. Ongwae, and M. M. Pires, (2023) “Measure ment of Accumulation of Antibiotics to Staphylococcus au reus in Phagosomes of Live Macrophages" Angewandte Chemie International Edition 63: DOI: 10.1002/anie.202313870.
  10. [10] H. Liu, T. Xu, Z. Xue, M. Huang, T. Wang, M. Zhang, R. Yang, and Y. Guo, (2024) “Current Development of Thiazole-Containing Compounds as Potential Antibac terials against Methicillin-Resistant Staphylococcus au reus" ACS Infectious Diseases 10: 350. DOI: 10.1021/acsinfecdis.3c00647.
  11. [11] L.M.Schlecht, B. M. Peters, B. P. Krom, J. A. Freiberg, . H. G. M, S. G. Filler, M. A. Jabra-Rizk, and M. E. Shirtliff, (2015) “Systemic Staphylococcus aureus infec tion mediated by Candida albicans hyphal invasion of mu cosal tissue" Microbiology 161(1): 168. DOI: 10.1099/mic.0.083485-0.
  12. [12] M.-C. Daniel and D. Astruc, (2003) “Gold Nanopar ticles: Assembly, Supramolecular Chemistry, Quantum Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology" Chemical Reviews 104: 293. DOI: 10.1021/cr030698+.
  13. [13] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, (2003) “One-Dimensional Nanostructures: Synthesis, Characterization, and Appli cations" Advanced Materials 15(5): 353. DOI: 10.1002/adma.200390087.
  14. [14] A. M. El-Khawaga, A. Zidan, and A. I. Abd El Mageed, (2023) “Preparation methods of different nano materials for various potential applications: A review" Journal of Molecular Structure 1281: 135148. DOI: 10.1016/j.molstruc.2023.135148.
  15. [15] N. L. Rosi and C. A. Mirkin, (2005) “Nanostructures in Biodiagnostics" Chemical Reviews 105: 1547. DOI: 10.1021/cr030067f.
  16. [16] H.-D.Koh,M.Changez,andJ.-S.Lee,(2010) “Au/CdS Hybrid Nanoparticles in Block Copolymer Micellar Shells" Macromolecular Rapid Communications 31: 1798. DOI: 10.1002/marc.201000214.
  17. [17] P. G. Jamkhande, N. W. Ghule, A. H. Bamer, and M. G. Kalaskar, (2019) “Metal nanoparticles synthe sis: An overview on methods of preparation, advantages and disadvantages, and applications" Journal of Drug Delivery Science and Technology 53: 101174. DOI: 10.1016/j.jddst.2019.101174.
  18. [18] J. M. Palomo, (2019) “Nanobiohybrids: a new concept for metal nanoparticles synthesis" Chemical Communi cations 55: 9583. DOI: 10.1039/C9CC04944D.
  19. [19] X. Zhuo, M. Henriksen-Lacey, D. Jimenez de Aberas turi, A. Sánchez-Iglesias, and L. M. Liz-Marzán, (2020) “Shielded Silver Nanorods for Bioapplications" Chemistry of Materials 32(13): 5879. DOI: 10.1021/acs.chemmater.0c01995.
  20. [20] M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, (2011) “Control ling the Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications" Chemical Reviews 111: 3669. DOI: 10.1021/cr100275d.
  21. [21] A. Jakab, C. Rosman, Y. Khalavka, J. Becker, A. Trügler, U. Hohenester, and C. Sönnichsen, (2011) “Highly Sensitive Plasmonic Silver Nanorods" ACSNano 5: 6880. DOI: 10.1021/nn200877b.
  22. [22] Y. Xia, K. D. Gilroy, H.-C. Peng, and X. Xia, (2016) “Seed-Mediated Growth of Colloidal Metal Nanocrystals" Angewandte Chemie International Edition 56: 60. DOI: 10.1002/anie.201604731.
  23. [23] M.Changez,M.F.Anwar,S.Al-Ghenaime,S.Kapoor, R. A. Balushi, and A. Chaudhuri, (2022) “Syner gic effect of aqueous extracts of Ocimum sanctum and Trigonella foenum-graecum L on the in situ green syn thesis of silver nanoparticles and as a preventative agent against antibiotic-resistant food spoiling organisms" RSC Advances 12: 1425. DOI: 10.1039/d1ra08098a.
  24. [24] A.Mishra, S. Kumar, and A. Singh, (2024) “Biosynthe sis and characterization of Ocimum sanctum green silver nanoparticles and unravelling their enhanced anti-filarial activity through a HRAMS proteomics approach" RSC Advances 14: 5893. DOI: 10.1039/d3ra08702f.
  25. [25] G. Tailor, B. Yadav, J. Chaudhary, M. Joshi, and C. Suvalka, (2020) “Green synthesis of silver nanoparticles using Ocimum canum and their anti-bacterial activity" Biochemistry and Biophysics Reports 24: 100848. DOI: 10.1016/j.bbrep.2020.100848.
  26. [26] S.Yadav, S. Sharma, F. Ahmad, and S. Rathaur, (2020) “Antifilarial efficacy of green silver nanoparticles synthe sized using Andrographis paniculata" Journal of Drug Delivery Science and Technology 56: 101557. DOI: 10.1016/j.jddst.2020.101557.
  27. [27] S. Pal, E. J. Yoon, Y. K. Tak, E. C. Choi, and J. M. Song, (2009) “Synthesis of Highly Antibacterial Nanocrys talline Trivalent Silver Polydiguanide" Journal of the American Chemical Society 131: 16147. DOI: 10. 1021/ja9051125.
  28. [28] A. S. Jain, P. S. Pawar, A. Sarkar, V. Junnuthula, and S. Dyawanapelly, (2021) “Bionanofactories for Green Synthesis of Silver Nanoparticles: Toward Antimicrobial Applications" International Journal of Molecular Sci ences 22: 11993. DOI: 10.3390/ijms222111993.
  29. [29] S. Jain and M. S. Mehata, (2017) “Medicinal Plant Leaf Extract and Pure Flavonoid Mediated Green Synthesis of Silver Nanoparticles and their Enhanced Antibacterial Property" Scientific Reports 7: DOI: 10.1038/s41598 017-15724-8.
  30. [30] S. Hameed, Y. Wang, L. Zhao, L. Xie, and Y. Ying, (2020) “Shape-dependent significant physical mutila tion and antibacterial mechanisms of gold nanoparticles against foodborne bacterial pathogens (Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus) at lower concentrations" Materials Science and Engineering: C 108: 110338. DOI: 10.1016/j.msec.2019.110338.
  31. [31] Z.-Y. Chen, S. Gao, Y.-W. Zhang, R.-B. Zhou, and F. Zhou, (2021) “Antibacterial biomaterials in bone tis sue engineering" Journal of Materials Chemistry B 9: 2594. DOI: 10.1039/d0tb02983a.
  32. [32] F. Huang, Y. Gao, Y. Zhang, T. Cheng, H. Ou, L. Yang, J. Liu, L. Shi, and J. Liu, (2017) “Silver-Decorated Poly meric Micelles Combined with Curcumin for Enhanced Antibacterial Activity" ACS Applied Materials and Interfaces 9: 16880. DOI: 10.1021/acsami.7b03347.
  33. [33] O.T. Fanoro and O. S. Oluwafemi, (2020) “Bacterici dal Antibacterial Mechanism of Plant Synthesized Silver, Gold and Bimetallic Nanoparticles" Pharmaceutics 12: 1044. DOI: 10.3390/pharmaceutics12111044.
  34. [34] J. P. L. Oracion, B. Lyka, M. L. M. Budlayan, M. J. D. Rodriguez, J. P. Manigo, J. N. Patricio, S. D. Arco, E. S. Austria, A. C. Alguno, C. C. Deocaris, et al., (2021) “Simple one-pot in situ synthesis of gold and sil ver nanoparticles on bacterial cellulose membrane using polyethyleneimine" Journal of Applied Science and Engineering 24: 351. DOI: 10.6180/jase.202106_24(3).0010.
  35. [35] A. K. Ojha, S. Forster, S. Kumar, S. Vats, S. Negi, and I. Fischer, (2013) “Synthesis of well-dispersed silver nanorods of different aspect ratios and their antimicrobial properties against gram positive and negative bacterial strains" Journal of Nanobiotechnology 11: 42. DOI: 10.1186/1477-3155-11-42.


    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.