- [1] M.Masalha, I. Borovok, R. Schreiber, Y. Aronowitz, and G. Cohen, (2001) “Analysis of Transcription of the Staphylococcus aureus Aerobic Class Ib and Anaerobic Class III Ribonucleotide Reductase Genes in Response to Oxygen" Journal of Bacteriology 183: 7260. DOI: 10.1128/jb.183.24.7260-7272.2001.
- [2] T. Xue, X. Zhang, H. Sun, and B. Sun, (2013) “ArtR, a novel sRNA of Staphylococcus aureus, regulates-toxin expression by targeting the 5 UTR of sarT mRNA" Med ical Microbiology and Immunology 203: 1. DOI: 10.1007/s00430-013-0307-0.
- [3] J.A.Lindsay,(2010)“Genomicvariationandevolution of Staphylococcus aureus" International Journal of Med ical Microbiology 300: 98–103. DOI: 10.1016/j.ijmm.2009.08.013.
- [4] J. R. Fitzgerald, (2014) “Evolution of Staphylococcus aureus during human colonization and infection" In fection, Genetics and Evolution 21: 542–547. DOI: 10.1016/j.meegid.2013.04.020.
- [5] S. Y. C. Tong, J. S. Davis, E. Eichenberger, T. L. Hol land, and V. G. Fowler, (2015) “Staphylococcus aureus Infections: Epidemiology, Pathophysiology, Clinical Man ifestations, and Management" Clinical Microbiology Reviews 28: 603–661. DOI: 10.1128/cmr.00134-14.
- [6] A. C. Senok, H. Verstraelen, M. Temmerman, and G. A. Botta, (2009) “Probiotics for the treatment of bac terial vaginosis" Cochrane Database of Systematic Reviews (4):
- [7] T. J. Foster, (2002) “Staphylococcus aureus" Molecular medical microbiology: 839–888.
- [8] J.Haaber, J. R. Penadés, and H. Ingmer, (2017) “Trans fer of antibiotic resistance in Staphylococcus aureus" Trends in microbiology 25(11): 893–905.
- [9] J. J. Kelly, B. E. Dalesandro, Z. Liu, M. D. Chordia, G. M. Ongwae, and M. M. Pires, (2023) “Measure ment of Accumulation of Antibiotics to Staphylococcus au reus in Phagosomes of Live Macrophages" Angewandte Chemie International Edition 63: DOI: 10.1002/anie.202313870.
- [10] H. Liu, T. Xu, Z. Xue, M. Huang, T. Wang, M. Zhang, R. Yang, and Y. Guo, (2024) “Current Development of Thiazole-Containing Compounds as Potential Antibac terials against Methicillin-Resistant Staphylococcus au reus" ACS Infectious Diseases 10: 350. DOI: 10.1021/acsinfecdis.3c00647.
- [11] L.M.Schlecht, B. M. Peters, B. P. Krom, J. A. Freiberg, . H. G. M, S. G. Filler, M. A. Jabra-Rizk, and M. E. Shirtliff, (2015) “Systemic Staphylococcus aureus infec tion mediated by Candida albicans hyphal invasion of mu cosal tissue" Microbiology 161(1): 168. DOI: 10.1099/mic.0.083485-0.
- [12] M.-C. Daniel and D. Astruc, (2003) “Gold Nanopar ticles: Assembly, Supramolecular Chemistry, Quantum Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology" Chemical Reviews 104: 293. DOI: 10.1021/cr030698+.
- [13] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, (2003) “One-Dimensional Nanostructures: Synthesis, Characterization, and Appli cations" Advanced Materials 15(5): 353. DOI: 10.1002/adma.200390087.
- [14] A. M. El-Khawaga, A. Zidan, and A. I. Abd El Mageed, (2023) “Preparation methods of different nano materials for various potential applications: A review" Journal of Molecular Structure 1281: 135148. DOI: 10.1016/j.molstruc.2023.135148.
- [15] N. L. Rosi and C. A. Mirkin, (2005) “Nanostructures in Biodiagnostics" Chemical Reviews 105: 1547. DOI: 10.1021/cr030067f.
- [16] H.-D.Koh,M.Changez,andJ.-S.Lee,(2010) “Au/CdS Hybrid Nanoparticles in Block Copolymer Micellar Shells" Macromolecular Rapid Communications 31: 1798. DOI: 10.1002/marc.201000214.
- [17] P. G. Jamkhande, N. W. Ghule, A. H. Bamer, and M. G. Kalaskar, (2019) “Metal nanoparticles synthe sis: An overview on methods of preparation, advantages and disadvantages, and applications" Journal of Drug Delivery Science and Technology 53: 101174. DOI: 10.1016/j.jddst.2019.101174.
- [18] J. M. Palomo, (2019) “Nanobiohybrids: a new concept for metal nanoparticles synthesis" Chemical Communi cations 55: 9583. DOI: 10.1039/C9CC04944D.
- [19] X. Zhuo, M. Henriksen-Lacey, D. Jimenez de Aberas turi, A. Sánchez-Iglesias, and L. M. Liz-Marzán, (2020) “Shielded Silver Nanorods for Bioapplications" Chemistry of Materials 32(13): 5879. DOI: 10.1021/acs.chemmater.0c01995.
- [20] M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, (2011) “Control ling the Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications" Chemical Reviews 111: 3669. DOI: 10.1021/cr100275d.
- [21] A. Jakab, C. Rosman, Y. Khalavka, J. Becker, A. Trügler, U. Hohenester, and C. Sönnichsen, (2011) “Highly Sensitive Plasmonic Silver Nanorods" ACSNano 5: 6880. DOI: 10.1021/nn200877b.
- [22] Y. Xia, K. D. Gilroy, H.-C. Peng, and X. Xia, (2016) “Seed-Mediated Growth of Colloidal Metal Nanocrystals" Angewandte Chemie International Edition 56: 60. DOI: 10.1002/anie.201604731.
- [23] M.Changez,M.F.Anwar,S.Al-Ghenaime,S.Kapoor, R. A. Balushi, and A. Chaudhuri, (2022) “Syner gic effect of aqueous extracts of Ocimum sanctum and Trigonella foenum-graecum L on the in situ green syn thesis of silver nanoparticles and as a preventative agent against antibiotic-resistant food spoiling organisms" RSC Advances 12: 1425. DOI: 10.1039/d1ra08098a.
- [24] A.Mishra, S. Kumar, and A. Singh, (2024) “Biosynthe sis and characterization of Ocimum sanctum green silver nanoparticles and unravelling their enhanced anti-filarial activity through a HRAMS proteomics approach" RSC Advances 14: 5893. DOI: 10.1039/d3ra08702f.
- [25] G. Tailor, B. Yadav, J. Chaudhary, M. Joshi, and C. Suvalka, (2020) “Green synthesis of silver nanoparticles using Ocimum canum and their anti-bacterial activity" Biochemistry and Biophysics Reports 24: 100848. DOI: 10.1016/j.bbrep.2020.100848.
- [26] S.Yadav, S. Sharma, F. Ahmad, and S. Rathaur, (2020) “Antifilarial efficacy of green silver nanoparticles synthe sized using Andrographis paniculata" Journal of Drug Delivery Science and Technology 56: 101557. DOI: 10.1016/j.jddst.2020.101557.
- [27] S. Pal, E. J. Yoon, Y. K. Tak, E. C. Choi, and J. M. Song, (2009) “Synthesis of Highly Antibacterial Nanocrys talline Trivalent Silver Polydiguanide" Journal of the American Chemical Society 131: 16147. DOI: 10. 1021/ja9051125.
- [28] A. S. Jain, P. S. Pawar, A. Sarkar, V. Junnuthula, and S. Dyawanapelly, (2021) “Bionanofactories for Green Synthesis of Silver Nanoparticles: Toward Antimicrobial Applications" International Journal of Molecular Sci ences 22: 11993. DOI: 10.3390/ijms222111993.
- [29] S. Jain and M. S. Mehata, (2017) “Medicinal Plant Leaf Extract and Pure Flavonoid Mediated Green Synthesis of Silver Nanoparticles and their Enhanced Antibacterial Property" Scientific Reports 7: DOI: 10.1038/s41598 017-15724-8.
- [30] S. Hameed, Y. Wang, L. Zhao, L. Xie, and Y. Ying, (2020) “Shape-dependent significant physical mutila tion and antibacterial mechanisms of gold nanoparticles against foodborne bacterial pathogens (Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus) at lower concentrations" Materials Science and Engineering: C 108: 110338. DOI: 10.1016/j.msec.2019.110338.
- [31] Z.-Y. Chen, S. Gao, Y.-W. Zhang, R.-B. Zhou, and F. Zhou, (2021) “Antibacterial biomaterials in bone tis sue engineering" Journal of Materials Chemistry B 9: 2594. DOI: 10.1039/d0tb02983a.
- [32] F. Huang, Y. Gao, Y. Zhang, T. Cheng, H. Ou, L. Yang, J. Liu, L. Shi, and J. Liu, (2017) “Silver-Decorated Poly meric Micelles Combined with Curcumin for Enhanced Antibacterial Activity" ACS Applied Materials and Interfaces 9: 16880. DOI: 10.1021/acsami.7b03347.
- [33] O.T. Fanoro and O. S. Oluwafemi, (2020) “Bacterici dal Antibacterial Mechanism of Plant Synthesized Silver, Gold and Bimetallic Nanoparticles" Pharmaceutics 12: 1044. DOI: 10.3390/pharmaceutics12111044.
- [34] J. P. L. Oracion, B. Lyka, M. L. M. Budlayan, M. J. D. Rodriguez, J. P. Manigo, J. N. Patricio, S. D. Arco, E. S. Austria, A. C. Alguno, C. C. Deocaris, et al., (2021) “Simple one-pot in situ synthesis of gold and sil ver nanoparticles on bacterial cellulose membrane using polyethyleneimine" Journal of Applied Science and Engineering 24: 351. DOI: 10.6180/jase.202106_24(3).0010.
- [35] A. K. Ojha, S. Forster, S. Kumar, S. Vats, S. Negi, and I. Fischer, (2013) “Synthesis of well-dispersed silver nanorods of different aspect ratios and their antimicrobial properties against gram positive and negative bacterial strains" Journal of Nanobiotechnology 11: 42. DOI: 10.1186/1477-3155-11-42.