Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Rosalia Sira Sarungallo1,3, Muh. Wihardi Tjaronge1, Ahyar Ahmad2This email address is being protected from spambots. You need JavaScript enabled to view it., and Muralia Hustim1

1Department of Civil Engineering, Faculty of Engineering, Hasanuddin University, Malino Road Km. 6, Bontomarannu, Gowa, South Sulawesi, 92171, Indonesia

2Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Perintis Kemerdekaan Street Km. 10, Tamalanrea, Makassar 90245, South Sulawesi, Indonesia

3Department of Chemical Engineering, Faculty of Engineering, Universitas Kristen Indonesia Paulus, Perintis Kemerdekaan Street, Km. 13, Daya, Makassar 90243, South Sulawesi, Indonesia.


 

 

Received: August 7, 2024
Accepted: November 10, 2024
Publication Date: January 13, 2025

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202510_28(10).0004  


This study investigates the potential of Super 1 sorghum starch-chitosan-based adhesive for eco-friendly particleboards. Sorghum starch was extracted and characterized, its viscoamylographic profile was analyzed, and adhesive composites were prepared with varying chitosan concentrations. FTIR analysis revealed the formation of hydrogen bonds between hydroxyl groups (−OH) on sorghum starch and amino groups (−NH2) on chitosan, enhancing the stability and mechanical strength of the composites. Chitosan addition altered the crystal structure of starch, increasing amorphinity and material flexibility, as evidenced by XRD analysis. Viscoamylographic profiles indicated good gelation ability and viscosity. Sorghum starch-chitosan adhesive holds promise as an alternative to synthetic adhesives for the fabrication of eco-friendly particleboards. Further research is warranted to evaluate the adhesive performance in particleboard production and optimize the formulation and production process for broader construction applications.


Keywords: Super 1 sorghum starch; chitosan; adhesive; particleboard; eco-friendly


  1. [1] S. Shahnoori and M. Mohammadi, (2022) “Construc tion for Health; Reversing the Impacts" Buildings 12(8): 1133. DOI: 10.3390/buildings12081133.
  2. [2] A. A. Wieser, M. Scherz, A. Passer, and H. Kreiner, (2021) “Challenges of a Healthy Built Environment: Air Pollution in Construction Industry" Sustainabil ity 13(18): DOI: 10.3390/su131810469.
  3. [3] P. V. Dhawale, S. K. Vineeth, R. V. Gadhave, J. Fatima M. J., M. V. Supekar, V. K. Thakur, and P. Raghavan, (2022) “Tannin as a renewable raw material for adhesive applications: a review" Mater. Adv. 3: 3365–3388. DOI: 10.1039/D1MA00841B.
  4. [4] S. Vineeth, C. B. Soni, Sungjemmenla, C. Sanjayku mar, Y. Yamauchi, M. Han, and V. Kumar, (2023) “A quasi-solid state polymer electrolyte for high-rate and long life sodium-metal batteries" Journal of Energy Storage 73: 108780. DOI: https://doi.org/10.1016/j.est.2023.108780
  5. [5] S. K. Vineeth, M. Tebyetekerwa, H. Liu, C. B. Soni, Sungjemmenla, X. S. Zhao, and V. Kumar, (2022) “Progress in the development of solid-state electrolytes for reversible room-temperature sodium–sulfur batter ies" Mater. Adv. 3: 6415–6440. DOI: 10.1039/D2MA00428C.
  6. [6] M. A. H. Mohd Azman, S. Ahmad Sobri, M. N. Norizan, M. N. Ahmad, W. O. A. S. Wan Ismail, K. A. Hambali, M. H. Hairi, A. Hermawan, M. Mohamed, P. T. Teo, M. R. Taharin, and N. A. Mat Noor, (2021) “Life Cycle Assessment (LCA) of Particleboard: Investiga tion of the Environmental Parameters" Polymers 13(13): DOI: 10.3390/polym13132043.
  7. [7] M. Popovi´c, M. Ðiporovi´c-Momˇcilovi´c, and I. Gavrilovi´c-Grmuša, (2020) “New standards and reg ulations on formaldehyde emission from wood-based com posite panels" Zastita materijala 61(2): 152–160. DOI: 10.5937/zasmat2002152P.
  8. [8] R. V. Gadhave, V. S.K., P. V. Dhawale, and P. T. Gadekar, (2020) “Effect of boric acid on poly vinyl alcohol- tannin blend and its application as water-based wood adhesive" Designed Monomers and Polymers 23: 188–196. DOI: 10.1080/15685551.2020.1826124.
  9. [9] T. Soubam and A. Gupta, (2021) “Eco-friendly natu ral rubber latex and modified starch-based adhesive for wood-based panels application- A review" Maejo In ternational Journal of Energy and Environmental Communication 3: 49–53. DOI: 10.54279/mijeec.v3i1.245163.
  10. [10] V. Uemura Silva, M. F. Nascimento, P. Resende Oliveira, T. H. Panzera, M. O. Rezende, D. A. L. Silva, V. Borges de Moura Aquino, F. A. Rocco Lahr, and A. L. Christoforo, (2021) “Circular vs. linear economy of building materials: A case study for particleboards made of recycled wood and biopolymer vs. conventional parti cleboards" Construction and Building Materials 285: 122906. DOI: https://doi.org/10.1016/j.conbuildmat.2021.122906
  11. [11] P. Dhawale, S. Gadhave, and R. Gadhave, (2023) “Environmentally Friendly Chitosan-Based Wood/Wood Composite Adhesive: Review" Green and Sustainable Chemistry 13: 237–253. DOI: 10.4236/gsc.2023.134013.
  12. [12] A. Arias, G. Feijoo, and M. T. Moreira, (2021) “Evalu ation of Starch as an Environmental-Friendly Bioresource for the Development of Wood Bioadhesives" Molecules 26(15): DOI: 10.3390/molecules26154526.
  13. [13] Y. Monroy, S. Rivero, and M. A. García, (2019) “Sus tainable panels design based on modified cassava starch bioadhesives and wood processing byproducts" Indus trial Crops and Products 137: 171–179. DOI: https://doi.org/10.1016/j.indcrop.2019.04.062.
  14. [14] Y. Fan and F. Picchioni, (2020) “Modification of starch: Areview on the application of “green” solvents and con trolled functionalization" Carbohydrate Polymers 241: 116350. DOI: https://doi.org/10.1016/j.carbpol.2020.116350.
  15. [15] S. Mehboob, T. M. Ali, M. Sheikh, and A. Hasnain, (2020) “Effects of cross linking and/or acetylation on sorghum starch and film characteristics" International Journal of Biological Macromolecules 155: 786–794. DOI: https://doi.org/10.1016/j.ijbiomac.2020.03.144.
  16. [16] M.I.Maulana, M. A.R.Lubis, F. Febrianto, L. S. Hua, A. H. Iswanto, P. Antov, L. Kristak, E. Mardawati, R. K. Sari, L. H. Zaini, W. Hidayat, V. L. Giudice, and L. Todaro, (2022) “Environmentally Friendly Starch Based Adhesives for Bonding High-Performance Wood Composites: A Review" Forests 13(10): DOI: 10.3390/f13101614.
  17. [17] S. Suri and A. Singh, (2023) “Modification of starch by novel and traditional ways: influence on the structure and functional properties" Sustainable Food Technology 1(3): 348–362. DOI: 10.1039/D2FB00043A.
  18. [18] P. Solt, J. Konnerth, W. Gindl-Altmutter, W. Kantner, J. Moser, R. Mitter, and H. W. van Herwijnen, (2019) “Technological performance of formaldehyde-free adhesive alternatives for particleboard industry" International Journal of Adhesion and Adhesives 94: 99–131. DOI: https://doi.org/10.1016/j.ijadhadh.2019.04.007.
  19. [19] J. Watcharakitti, E. E. Win, J. Nimnuan, and S. M. Smith, (2022) “Modified Starch-Based Adhesives: A Re view" Polymers 14(10): DOI: 10.3390/polym14102023.
  20. [20] R.Wang,M.Li, J. Liu, F. Wang, J. Wang, and Z. Zhou, (2021) “Dual modification manipulates rice starch char acteristics following debranching and propionate esterifi cation" Food Hydrocolloids 119: 1–9, p. 106833. DOI: https://doi.org/10.1016/j.foodhyd.2021.106833.
  21. [21] F. G. Torres and G. E. De-la-Torre, (2022) “Synthe sis, characteristics, and applications of modified starch nanoparticles: A review" International Journal of Bi ological Macromolecules 194: 289–305. DOI: https://doi.org/10.1016/j.ijbiomac.2021.11.187.
  22. [22] R.V. G.S. K. Vineeth and P. T. Gadekar, (2021) “Inves tigation of crosslinking ability of sodium metabisulphite with polyvinyl alcohol–corn starch blend and its applicabil ity as wood adhesive" Indian Chemical Engineer 64(2): 197–207. DOI: 10.1080/00194506.2021.1887769. eprint: https://doi.org/10.1080/00194506.2021.1887769.
  23. [23] K. S. Sandhu, A. K. Siroha, S. Punia, L. Sangwan, M. Nehra, and S. S. Purewal, (2021) “Effect of degree of cross linking on physicochemical, rheological and mor phological properties of Sorghum starch" Carbohydrate Polymer Technologies and Applications 2: 1–8. p. 100073. DOI: https://doi.org/10.1016/j.carpta.2021.100073
  24. [24] X. Zhao, X. Guo, Y. Wang, Q. Su, H. Wang, Z. Li, and S. Pang, (2023) “Composite modified starch-based adhesive with high adhesion and zero aldehyde" Indus trial Crops and Products 206: 1–11, p. 117566. DOI: https://doi.org/10.1016/j.indcrop.2023.117566.
  25. [25] A. Kishore, R. J. Patil, A. Singh, and K. Pati, (2024) “Jicama (Pachyrhizus spp.) a nonconventional starch: A review on isolation, composition, structure, properties, modifications and its application" International Jour nal of Biological Macromolecules 258(Pt2): 1–14, p. 129095. DOI: https://doi.org/10.1016/j.ijbiomac.2023.129095.
  26. [26] A. Ait Benhamou, A. Boussetta, Z. Kassab, M. Nadi f iyine, H. Sehaqui, M. El Achaby, and A. Moubarik, (2022) “Elaboration of carboxylated cellulose nanocrystals f illed starch-based adhesives for the manufacturing of eco friendly particleboards" Construction and Building Materials 348: 1–12, p. 128683. DOI: https://doi.org/10.1016/j.conbuildmat.2022.128683
  27. [27] H. Yu, Y. Xia, X. Liu, H. Chen, Z. Jin, Z. Wang, and S. Wang, (2024) “Preparation of self-assembled modified reed fiber reinforced starch-based adhesive and the study of cross-linking mechanism" Industrial Crops and Prod ucts 211: 1–13, p. 118204. DOI: https://doi.org/10.1016/j.indcrop.2024.118204
  28. [28] Y. Gu, L. Cheng, Z. Gu, Y. Hong, Z. Li, and C. Li, (2019) “Preparation, characterization and properties of starch-based adhesive for wood-based panels" Interna tional Journal of Biological Macromolecules 134: 247–254. DOI: https://doi.org/10.1016/j.ijbiomac.2019.04.088.
  29. [29] S. Oktay, N. Kızılcan, and B. Bengu, (2021) “Oxidized cornstarch– Urea wood adhesive for interior particleboard production" International Journal of Adhesion and Adhesives 110: 1–7, p. 102947. DOI: https://doi.org/10.1016/j.ijadhadh.2021.102947.
  30. [30] Y.Chen,Y.Rao,P.Liu,L.Wu,G.Zhang,J.Zhang,and F. Xie, (2024) “High-amylose starch-based gel as green adhesive for plywood: Adhesive property, water-resistance, and flame-retardancy" Carbohydrate Polymers 339: 1–12, p. 122247. DOI: https://doi.org/10.1016/j.carbpol.2024.122247
  31. [31] M. B. Pabendon, S. Mas’ud, R. S. Sarungallo, and A. Nur, (2012) “Penampilan Fenotipik Dan Stabilitas Sorgum Manis Untuk Bahan Baku Bioetanol" Jurnal Penelitian Pertanian Tanaman Pangan 31(1): DOI: 10.21082/jpptp.v31n1.2012.p%p.
  32. [32] E. E. Pérez Sira and M. Lares Amaiz, (2004) “A labo ratory scale method for isolation of starch from pigmented sorghum" Journal of Food Engineering 64(4): 515 519. DOI: https://doi.org/10.1016/j.jfoodeng.2003.11.019.
  33. [33] F. Shaikh, T. M. Ali, G. Mustafa, and A. Hasnain, (2019) “Comparative study on effects of citric and lac tic acid treatment on morphological, functional, resistant starch fraction and glycemic index of corn and sorghum starches" International Journal of Biological Macro molecules 135: 314–327. DOI: https://doi.org/10.1016/j.ijbiomac.2019.05.115
  34. [34] K. H. S. Peiris, X. Wu, S. R. Bean, M. Perez-Fajardo, C. Hayes, M. K. Yerka, S. V. K. Jagadish, T. Ost meyer, F. M. Aramouni, T. Tesso, R. Perumal, W. L. Rooney, M. A. Kent, and B. Bean, (2021) “Near In frared Spectroscopic Evaluation of Starch Properties of Diverse Sorghum Populations" Processes 9(11): DOI: 10.3390/pr9111942.
  35. [35] Y. Ai, J. Medic, H. Jiang, D. Wang, and J.-l. Jane, (2011) “Starch Characterization and Ethanol Produc tion of Sorghum" Journal of Agricultural and Food Chemistry 59(13): 7385–7392. DOI: 10.1021/jf2007584.eprint: https://doi.org/10.1021/jf2007584.
  36. [36] L. Ren, X. Yan, J. Zhou, J. Tong, and X. Su, (2017) “Influence of chitosan concentration on mechanical and barrier properties of corn starch/chitosan films" Interna tional Journal of Biological Macromolecules 105: 1636–1643. DOI: https://doi.org/10.1016/j.ijbiomac.2017.02.008.
  37. [37] D. Li, B. Zhuang, X. ( Wang, Z. Wu, W. Wei, J. T. Aladejana, X. Hou, K. G. Yves, Y. Xie, and J. Liu, (2020) “Chitosan used as a specific coupling agent to modify starch in preparation of adhesive film" Journal of Cleaner Production 277: 1–8, p. 123210. DOI: https://doi.org/10.1016/j.jclepro.2020.123210.
  38. [38] R. A. Shapi’i, S. H. Othman, R. K. Basha, and M. N. Naim, (2022) Nanotechnology Reviews 11(1): 1464 1477. DOI: doi:10.1515/ntrev-2022-0094.
  39. [39] R. Dwiyanna, R. Widyorini, and G. Kusuma Dewi, (2024) “Physical and Mechanical Properties of Parti cleboard from Petung Bamboo-waste using Eco-friendly Chitosan-starch Adhesive" Wood Research Journal 14(1): 34–40. DOI: 10.51850/wrj.2023.14.1.34-40.
  40. [40] R. S. Sarungallo, M. W. Tjaronge, A. Ahmad, and M. Hustim, (2024) “Adjustment of temperature and starch concentration in the NaOH hydrolysis process for the de velopment of sustainable adhesives from sorghum starch" AIP Conference Proceedings 3140(1): 1–8, p. 060015. DOI: 10.1063/5.0221170. eprint: https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/5.0221170/20038879/060015\_1\_5.0221170.pdf
  41. [41] J. Chen, J. Zhang, D. Liu, C. Zhang, H. Yi, and D. Liu, (2022) “Preparation, characterization, and appli cation of edible antibacterial three-layer films based on gelatin–chitosan–corn starch–incorporated nisin" Food Packaging and Shelf Life 34: 1–11. p. 100980. DOI: https://doi.org/10.1016/j.fpsl.2022.100980.
  42. [42] T. M. Mata, C. Freitas, G. V. Silva, S. Monteiro, J. M. Martins, L. H. de Carvalho, L. M. Silva, and A. A. Martins, (2023) “Life Cycle Analysis of a Particleboard Based on Cardoon and Starch/Chitosan" Sustainability 15(23): 1–16. DOI: 10.3390/su152316179.
  43. [43] B. Belhadi, D. Djabali, R. Souilah, M. Yousfi, and B. Nadjemi, (2013) “Three small-scale laboratory steep ing and wet-milling procedures for isolation of starch from sorghum grains cultivated in Sahara of Algeria" Food and Bioproducts Processing 91(3): 225–232. DOI: https://doi.org/10.1016/j.fbp.2012.09.008.
  44. [44] W. Horwitz and G. W. Latimer. Official methods of analysis of AOAC International. English. 18th ed. 1 volume : illustrations ; 29 cm. Gaithersburg, Md.: AOACInternational, 2005.
  45. [45] E. M. S. Silva, A. E. C. Peres, A. C. Silva, M. C. D. M. Leal, L. M. Lião, and V. O. de Almeida, (2019) “Sorghum starch as depressant in mineral flotation: part 1– extraction and characterization" Journal of Mate rials Research and Technology 8(1): 396–402. DOI: https://doi.org/10.1016/j.jmrt.2018.04.001.
  46. [46] Y. Qi, F. Du, Z. Jiang, B. Qiu, Q. Guan, J. Liu, and T. Xu, (2018) “Optimization of starch isolation from red sorghum using response surface methodology" LWT 91: 242–248. DOI: https://doi.org/10.1016/j.lwt.2018.01.014
  47. [47] B. Belhadi, R. Souilah, R. Ould-Kiar, M. Yousfi, D. Djabali, and B. Nadjemi, (2021) “Effects of phenotype and wet milling procedures on the starch isolation from sorghum (Sorghum bicolor L. Moench) grains" AIMS Agriculture and Food 6(2): 448–461. DOI: 10.3934/agrfood.2021026.
  48. [48] E. A. Elkhalifa, N. K. A. Abdalla, and S. A. M. Ab delkareem, (2017) “Utilization of Sorghum (Feterita) Starch in Production of Fructose Syrup" International Journal of Food Science and Nutrition Engineering 7(4): 70–74. DOI: 10.5923/j.food.20170704.02.
  49. [49] A. Micaela and S. R. Drago, (2020) “Comparison of Isolation Methods and Physicochemical Characteristics of Starches Isolated from Red and White Sorghum Hybrids" Starch- Stärke 72(11-12): 2000023. DOI: https://doi.org/10.1002/star.202000023. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/star.202000023.
  50. [50] A. P. A. de Carvalho, V. D. M. Silva, P. T. F. Souza, C. F. Garcia, V. A. V. Queiroz, R. G. Junqueira, and M. A. V. T. Garcia, (2024) “Sorghum starch: Extraction, characterization and film development" Materials Today Communications 39: 109020. DOI: https://doi.org/10.1016/j.mtcomm.2024.109020 .
  51. [51] R. Kaufman, J. Wilson, S. Bean, F. Xu, and Y.-C. Shi, (2017) “Sorghum starch properties as affected by growing season, hybrid, and kernel maturity" Journal of Cereal Science 74: 127–135. DOI: https://doi.org/10.1016/j.jcs.2017.01.014
  52. [52] X. J. Xie and P. A. Seib, (2000) “Laboratory Procedure to Wet-Mill 100 g of Grain Sorghum into Six Fractions" Cereal Chemistry 77(3): 392–395. DOI: https://doi.org/10.1094/CCHEM.2000.77.3.392
  53. [53] S. E. Lyons, Q. M. Ketterings, G. S. Godwin, D. J. Cherney, J. H. Cherney, M. E. Van Amburgh, J. J. Meisinger, and T. F. Kilcer, (2019) “Optimal harvest timing for brown midrib forage sorghum yield, nutritive value, and ration performance" Journal of Dairy Sci ence 102(8): 7134–7149. DOI: https://doi.org/10.3168/jds.2019-16516
  54. [54] L. Hoffmann Jr. and W. L. Rooney. “Sorghum Im provement for Yield”. In: Sorghum. John Wiley Sons, Ltd, 2019. Chap. 2, 31–46. DOI: https://doi.org/10. 2134/agronmonogr58.c2. eprint: https://acsess.onlinelibrary.wiley.com/doi/pdf/10.2134/agronmonogr58.c2.
  55. [55] O. O. Olayinka, K. O. Adebowale, and I. B. Olu Owolabi, (2013) “Physicochemical properties, morpho logical and X-ray pattern of chemically modified white sorghum starch (Bicolor-Moench)" Journal of Food Sci ence and Technology 50(1): 70–77. DOI: 10.1007/s13197-011-0233-3.
  56. [56] S. B. Azis Boing Sitanggang and Marisa, (2018) “Physicochemical characteristics of starch from Indone sian Numbu and Genjah sorghum (Sorghum bicolor L. Moench)" Cogent Food & Agriculture 4(1): 1429093. DOI: 10.1080/23311932.2018.1429093.
  57. [57] J.R.Gallardo, G. R. Castillejos, R. N. Cortez, A. P. Tor res, O. C. Ruíz, et al., (2023) “Proximal, thermal, and structural characterization of starch extracted from two varieties of white sorghum cultivated in Mexico" Agro ciencia: DOI: https://doi.org/10.47163/agrociencia.v57i1.2641
  58. [58] S. Yan, Z. Li, B. Wang, T. Li, Z. Li, N. Zhang, and B. Cui, (2023) “Correlation analysis on physicochemical and structural properties of sorghum starch" Frontiers in Nutrition 9: DOI: 10.3389/fnut.2022.1101868.
  59. [59] X. Kang, W. Zhu, T. Xu, J. Sui, W. Gao, Z. Liu, H. Jing, B. Cui, X. Qiao, and A. M. Abd El-Aty, (2022) “Characterization of starch structures isolated from the grains of waxy, sweet, and hybrid sorghum (Sorghum bicolor L. Moench)" Frontiers in Nutrition 9: 1052285. DOI: 10.3389/fnut.2022.1052285.
  60. [60] N. Zehra, T. Mohsin Ali, and A. Hasnain, (2020) “Comparative study on citric acid modified instant starches (alcoholic alkaline treated) isolated from white sorghum and corn grains" International Journal of Biological Macromolecules 150: 1331–1341. DOI: https://doi.org/10.1016/j.ijbiomac.2019.10.143.
  61. [61] B. S. G. Harpreet Kaur and B. L. Karwasra, (2018) “In vitro digestibility, pasting, and structural properties of starches from different cereals" International Journal of Food Properties 21(1): 70–85. DOI: 10.1080/10942912.2018.1439955. eprint: https://doi.org/10.1080/10942912.2018.1439955.
  62. [62] M. N. Soe Htet, H. Wang, L. Tian, V. Yadav, H. A. Samoon, and B. Feng, (2022) “Integrated Starches and Physicochemical Characterization of Sorghum Cultivars for an Efficient and Sustainable Intercropping Model" Plants 11(12): DOI: 10.3390/plants11121574.
  63. [63] F. Shaikh, T. M. Ali, G. Mustafa, and A. Hasnain, (2020) “Structural, functional and digestibility charac teristics of sorghum and corn starch extrudates (RS3) as affected by cold storage time" International Journal of Biological Macromolecules 164: 3048–3054. DOI: https://doi.org/10.1016/j.ijbiomac.2020.08.105.
  64. [64] W. Xiao, M. Shen, Y. Ren, H. Wen, J. Li, L. Rong, W. Liu, and J. Xie, (2022) “Controlling the pasting, rheo logical, gel, and structural properties of corn starch by incorporation of debranched waxy corn starch" Food Hy drocolloids 123: 107136. DOI: https://doi.org/10.1016/j.foodhyd.2021.107136.
  65. [65] S. Sharma, K. Thakur, R. Sharma, and H. Bobade, (2023) “Molecular morphology interactions, functional properties, rheology and in vitro digestibility of ultrasoni cally modified pearl millet and sorghum starches" Inter national Journal of Biological Macromolecules 253: 127476. DOI: https://doi.org/10.1016/j.ijbiomac.2023.127476
  66. [66] P. A. M. Ravindra V. Gadhave Vineeth S. K. and P. T. Gadekar, (2021) “Effect of addition of boric acid on thermo-mechanical properties of microcrystalline cel lulose/polyvinyl alcohol blend and applicability as wood adhesive" Journal of Adhesion Science and Technol ogy 35(10): 1072–1086. DOI: 10.1080/01694243.2020.1832775. eprint: https://doi.org/10.1080/01694243.2020.1832775.
  67. [67] N. E. Kochkina and N. D. Lukin, (2020) “Structure and properties of biodegradable maize starch/chitosan com posite films as affected by PVA additions" International Journal of Biological Macromolecules 157: 377–384. DOI: https://doi.org/10.1016/j.ijbiomac.2020.04.154.
  68. [68] A. B. Abou Hammad, A. Al-esnawy, A. Man sour, and A. M. El Nahrawy, (2023) “Synthesis and characterization of chitosan-corn starch-SiO2/silver eco nanocomposites: Exploring optoelectronic and antibac terial potential" International Journal of Biological Macromolecules 249: 126077. DOI: https://doi.org/ 10.1016/j.ijbiomac.2023.126077.
  69. [69] M.Liu, W. Yao, H. Zheng, H. Zhao, R. Shao, H. Tan, and Y. Zhang, (2023) “Preparation of a high-strength, hydrophobic performance starch-based adhesive with ox idative cross-linking via Fenton’s reagent" International  Journal of Biological Macromolecules 253: 126995. DOI: https://doi.org/10.1016/j.ijbiomac.2023.126995.
  70. [70] Medha, S. Sethi, P. Mahajan, S. Thakur, N. Sharma, N. Singh, A. Kumar, A. Kaur, and B. S. Kaith, (2024) “Design and evaluation of fluorescent chitosan-starch hy drogel for drug delivery and sensing applications" Inter national Journal of Biological Macromolecules 274: 133486. DOI: https://doi.org/10.1016/j.ijbiomac.2024.133486
  71. [71] X. Xi, A. Pizzi, H. Lei, B. Zhang, X. Chen, and G. Du, (2022) “Environmentally friendly chitosan adhesives for plywood bonding" International Journal of Adhesion and Adhesives 112: 103027. DOI: https://doi.org/10.1016/j.ijadhadh.2021.103027
  72. [72] Y. Chen, J. Qian, C. Zhao, L. Yang, J. Ding, and H. Guo, (2019) “Preparation and evaluation of porous starch/chitosan composite cross-linking hemostatic" Eu ropean Polymer Journal 118: 17–26. DOI: https://doi.org/10.1016/j.eurpolymj.2019.05.039
  73. [73] A. He, H. Yan, G. Zheng, R. Zhou, Y. Li, Z. Ye, and C. Zhang, (2024) “A high-sensitive capacitive humidity sensor based on chitosan-sodium chloride composite ma terial" Colloids and Surfaces A: Physicochemical and Engineering Aspects 699: 134740. DOI: https://doi.org/10.1016/j.colsurfa.2024.134740
  74. [74] S. Ahmed, T. Arshad, A. Zada, A. Afzal, M. Khan, A. Hussain, M. Hassan, M. Ali, and S. Xu, (2021) “Prepa ration and Characterization of a Novel Sulfonated Tita nium Oxide Incorporated Chitosan Nanocomposite Mem branes for Fuel Cell Application" Membranes 11(6): DOI: 10.3390/membranes11060450.
  75. [75] T. Sharma, G. Kaur, A. Singh, P. Kaur, B. Dar, and A. Kaur, (2023) “An emerging sustainable approach for de velopment and characterization of gluten-based nanocom posite films reinforced with starch nanocrystals in con jugation with chitosan" Sustainable Chemistry and Pharmacy 36: 101338. DOI: https://doi.org/10.1016/j.scp.2023.101338
  76. [76] P. Upadhyay and A. Ullah, (2024) “Enhancement of mechanical and barrier properties of chitosan-based bio nanocomposites films reinforced with eggshell-derived hy droxyapatite nanoparticles" International Journal of Biological Macromolecules 261: 129764. DOI: https://doi.org/10.1016/j.ijbiomac.2024.129764.


    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.