Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Song-Jeng Huang, Muhammad MunajadThis email address is being protected from spambots. You need JavaScript enabled to view it., Cynta Immanuela Lamandasa, and Sathiyalingam KannaiyanThis email address is being protected from spambots. You need JavaScript enabled to view it.

Department of Mechanical Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Rd, Da’an District, Taipei 10607, Taiwan


 

 

Received: January 8, 2025
Accepted: April 4, 2025
Publication Date: May 18, 2025

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202602_29(2).0004  


This study developed a hybrid metal composite of a 3D-printed 316 L stainless steel BCC lattice with magnesium alloy AZ91D by infiltration gravity stir casting technique. To enhance infiltration, the lattice was preheated to maintain furnace temperature, facilitating effective filling of the voids by the molten AZ91D alloy. Compression tests were conducted to evaluate the composite’s mechanical characteristics, energy absorption, and fracture morphology. In addition, the finding was compared with those of as-cast pure Mg and AZ91D alloys. The result shows that the energy absorption of AZ91D with 316 L stainless steel increases up to 160% more than as-cast pure Mg and up to 22% more than AZ91D, with the maximum energy absorption achieved at 17.02 J. The microstructural characteristics showed contact between AZ91D and the 316 L stainless steel lattice with some voids. The fracture morphology of the composite indicated shear bands and secondary cracks. The results show that magnesium hybrid metal composite is an innovative lightweight material with potential applications in aerospace, marine, and automotive fields based on enhancing mechanical properties.


Keywords: Composite material; 316 L stainless-steel lattice; Magnesium alloy AZ91D; Additive manufacturing; Stir casting; Mechanical properties.


  1. [1] H. Mehdi, S. Jain, V. Msomi, and S. Mabuwa, (2024) “Effect of intermetallic compounds on mechanical and microstructural properties of dissimilar alloys Al 7Si/AZ91D" Journal of Materials Engineering and  Performance 33: 4781–4793. DOI: 10.1007/s11665-023-08302-9.
  2. [2] D. K. Rajak and A. Menon, (2025) “Insights into magnesium alloy significance" Journal of Alloys and Metallurgical Systems 9: 100158. DOI: 10.1016/j.jalmes.2025.100158.
  3. [3] Y. Ge, Y. Gong, M. Hou, Z. Chang, N. Ma, and Q. Wang, (2025) “Optimization Design, Mechanical Properties, and Energy Absorption Characteristics of Thin Walled Porous Structures Manufactured by Selective Laser Melting" Advanced Engineering Materials 27: 2401786. DOI: 10.1002/adem.202401786.
  4. [4] S. Nikam, S. P. Shisode, and P. Pesode, (2025) “A Re view on Magnesium Matrix Composites for Biomedical Applications: Materials, Fabrication Techniques, Coatings, and Applications" Regenerative Engineering and Translational Medicine: DOI: 10.1007/s40883 025-00386-0.
  5. [5] X. Tao, J. Sun, Y. Huang, J. Yu, Y. Guo, Y. Xu, L. Yi, G. Wu, and W. Liu, (2025) “Ultra-light Mg-Li alloy with high modulus prepared by cold metal transfer-based directed energy deposition" Additive Manufacturing 97: 104617. DOI: 10.1016/j.addma.2024.104617.
  6. [6] J. Yu, X. Lu, H. Liu, V. A. Yardley, J. Lin, and T. A. Dean, (2025) “Fabrication of hybrid metal/metal curved composite profiles using differential velocity sideways extrusion process" Journal of Manufacturing Processes 136: 68–82. DOI: 10.1016/j.jmapro.2025.01.071.
  7. [7] N. K. Kumbhar, M. D. Joshi, and V. Kumar, “An impact of the recent developments in coating materials and techniques on the corrosion response of AZ91D alloy: are view" Advanced Engineering Materials 25: 2201680. DOI: 10.1002/adem.202201680.
  8. [8] H. Wang, R. Li, J. Liu, W. Zhou, K. Xia, and G. Yu, (2025) “A comparative study for demonstrating the effect of the assist gas and E-field on hole generation characteristics induced by femtosecond laser layered ring hole-cutting of magnesium alloy AZ91D sheets" Optics Communications 574: 131110. DOI: 10.1016/j.optcom.2024. 131110.
  9. [9] T. Li, Z. Lin, C. Su, G. Gu, H. Wang, L. Li, H. Zhong, Q. Han, and Q. Zhai, (2025) “A method for predicting hot tearing during alloy solidification and its application in AZ91Dmagnesium alloy" Engineering Failure Analysis 169: 109194. DOI: 10.1016/j.engfailanal.2024.109194.
  10. [10] D.-D. Zhuang, X.-L. Lian, T.-Y. Zhou, S.-H. Zhang, X.-C. Wang, J. Li, H.-S. Ding, and C. Wang, (2024) “The influence of ultrasonic assistance and laser melting on the microstructure and properties of AZ91D magnesium alloy" Surface and Coatings Technology 479: 130541. DOI: 10.1016/j.surfcoat.2024.130541.
  11. [11] C.-P. Jiang, A. T. Wibisono, and T. Pasang, (2021) “Selective Laser Melting of Stainless Steel 316L with Face-Centered-Cubic-Based Lattice Structures to Produce Rib Implants" Materials 14: 5962. DOI: 10.3390/ma14205962.
  12. [12] A. Centola, A. Ciampaglia, D. S. Paolino, and A. Tridello, (2025) “Probabilistic Machine Learning for preventing fatigue failures in Additively Manufactured SS316L" Engineering Failure Analysis 168: 109081. DOI: 10.1016/j.engfailanal.2024.109081.
  13. [13] R. S. Tanwar and S. Jhavar, (2025) “Investigation of microstructure and mechanical properties of austenitic steel bimetallic structures fabricated using wire arc direct energy deposition for remanufacturing applications" Journal of Advanced Joining Processes 11: 100287. DOI: 10.1016/j.jajp.2025.100287.
  14. [14] A. Thirugnanasambandam, M. K. Subramaniyan, and V. Elumalai, (2024) “Fabrication of Bimetallic Structure (SS 316L/SS 308L) via Wire + Arc Additive Manufacturing: A Detailed Characterization of Interface" Journal of Materials Engineering and Performance: DOI: 10.1007/s11665-024-10298-9.
  15. [15] C. Zhou, S. Hu, Q. Shi, H. Tao, Y. Song, J. Zheng, P. Xu, and L. Zhang, (2020) “Improvement of corrosion resistance of SS316L manufactured by selective laser melting through subcritical annealing" Corrosion Science 164: 108353. DOI: 10.1016/j.corsci.2019.108353.
  16. [16] W. Zhai, W. Zhou, and S. M. L. Nai, (2022) “Grain refinement and strengthening of 316L stainless steel through addition of TiC nanoparticles and selective laser melting" Materials Science and Engineering: A 832: 142460. DOI: 10.1016/j.msea.2021.142460.
  17. [17] M. S. Alam, S. R. Campbell, S. R. Spivey, G. Dutta, N. Pal, A. Karan, J. Xie, M. A. DeCoster, and E. P. Mur ray, (2025) “Additively manufactured 316L stainless steel as a potential alternative implant material" Journal of Materials Research and Technology 34: 2358–2373. DOI: 10.1016/j.jmrt.2024.12.199.
  18. [18] P. Hauschwitz, Z. Palkova, L. Vachova, R. Bicistova, M. Prochazka, V. Plocek, I. Tarant, S. Pathak, J. Bra jer, J. Muzik, Z. Fialkova, M. Kocab, J. Sladek, M. Flimelova, M. Smrž, M. Chyla, and T. Mocek, (2025)  “Rapid laser-induced nanostructuring for yeast adhesion reducing surfaces using beam shaping with SLM" Journal of Materials Research and Technology 35: 193 198. DOI: 10.1016/j.jmrt.2025.01.034.
  19. [19] J. Mao, W. Zhu, N. Ye, Z. Wu, J. Tang, H. Zhuo, and G. A. Bagliuk, (2025) “Effects of raw powder char acteristics on microstructure and mechanical properties of W20Cu composites manufactured by SLM" Interna tional Journal of Refractory Metals and Hard Materials 128: 107001. DOI: 10.1016/j.ijrmhm.2024.107001.
  20. [20] N. Khan and A. Riccio, (2024) “A systematic review of design for additive manufacturing of aerospace lattice structures: Current trends and future directions" Progress in Aerospace Sciences 149: 101021. DOI: 10.1016/j.paerosci.2024.101021.
  21. [21] R. Raj, J.-T. Tsai, M. J. Prajapati, and J.-Y. Jeng, (2025) “Lattice-based interpenetrating phase composite metamaterial fabricated with hybrid material extrusion process for tunable mechanical properties" Journal of Materials Research and Technology 35: 2955–2972. DOI: 10.1016/j.jmrt.2025.01.217.
  22. [22] F. Tanbar, A. D. Nugroho, A. D. Nugraha, S. Dar manto, D. Widagdo, G. N. C. Santos, and M. A. Mu flikhun, (2024) “Hybrid lattice structure with micro graphite filler manufactured via additive manufacturing and growth foam polyurethane" Composites Part C: Open Access 15: 100516. DOI: 10.1016/j.jcomc.2024. 100516.
  23. [23] T. Perets, N. Ben Ghedalia-Peled, R. Vago, J. Gold man, A. Shirizly, and E. Aghion, (2021) “In vitro behavior of bioactive hybrid implant composed of additively manufactured titanium alloy lattice infiltrated with Mg based alloy" Materials Science and Engineering: C 129: 112418. DOI: 10.1016/j.msec.2021.112418.
  24. [24] N. Gabay, T. Ron, R. Vago, A. Shirizly, and E. Aghion, (2021) “Evaluating the Prospects of Ti-Base Lattice Infiltrated with Biodegradable Zn–2% Fe Alloy as a Structural Material for Osseointegrated Implants—In Vitro Study" Materials 14(16): 4682. DOI: 10.3390/ma14164682.
  25. [25] Z. Wang, X. Jiang, G. Yang, B. Song,and H. Sha,(2024) “Design and mechanical performance analysis of T-BCC lattice structures" Journal of Materials Research and Technology 32: 1538–1551. DOI: 10.1016/j.jmrt.2024.08.021.
  26. [26] Z. Guo, F. Yang, P. Li, L. Li, M. Zhao, J. Shi, L. Zhang, and Y. Cai, (2024) “A partially hollow BCC lattice structure with capsule-shaped cavities for enhancing load bearing and energy absorption properties" Engineering Structures 305: 117777. DOI: 10.1016/j.engstruct.2024.117777.
  27. [27] C.-P. Jiang, A. T. Wibisono, S.-H. Wang, T. Pasang, and M. Ramezani, (2022) “Selective Laser Melting of Free-Assembled Stainless Steel 316L Hinges: Optimization of Volumetric Laser Energy Density and Joint Clearance" Metals 12: 1223. DOI: 10.3390/met12071223.
  28. [28] V. Semenov, H. C. Lin, L. Shuster, S. Zyoud, C. Chiu, S. J. Huang, and N. Tontchev, (2019) “Tribological properties of the AZ91D magnesium alloy hardened with silicon carbide and by severe plastic deformation" Jour nal of Friction and Wear 30: 194–198. DOI: 10.3103/ S1068366609030088.
  29. [29] S.-J. Huang, S.-Y. Wu, and M. Subramani, (2024) “Effect of Zinc and Severe Plastic Deformation on Mechanical Properties of AZ61 Magnesium Alloy" Materials 17: 1678. DOI: 10.3390/ma17071678.
  30. [30] S.-J. Huang, Y. Adityawardhana, and S. Kannaiyan, (2024) “Enhancement strength of AZ91 magnesium alloy composites reinforced with graphene by T6 heat treatment and equal channel angular pressing" Archives of Civil and Mechanical Engineering 24: 235. DOI: 10.1007/s43452-024-01048-8.
  31. [31] Z. Hu, B. Nagarajan, X. Song, R. Huang, W. Zhai, and J. Wei, (2019) “Formation of SS316L Single Tracks in Micro Selective Laser Melting: Surface, Geometry, and Defects" Advances in Materials Science and Engineering 2019: 9451406. DOI: 10.1155/2019/9451406.
  32. [32] F. Weng, S. Gao, J. Jiang, J. Wang, and P. Guo, (2019) “Anovel strategy to fabricate thin 316L stainless steel rods by continuous directed energy deposition in Z direction" Additive Manufacturing 27: 474–481. DOI: 10.1016/j. addma.2019.03.024.
  33. [33] R. Santamaria, M. Salasi, S. Bakhtiari, G. Leadbeater, M. Iannuzzi, and M. Z. Quadir, (2022) “Microstructure and mechanical behaviour of 316L stainless steel produced using sinter-based extrusion additive manufacturing" Journal of Materials Science 57: 9646–9662. DOI: 10.1007/s10853-021-06828-8.
  34. [34] K. M and S. V,(2021) “Experimental characterization of stainless steel 316L alloy fabricated with combined powder bed fusion and directed energy deposition" Welding in the World 65: 1373–1388. DOI: 10.1007/s40194-021-01117-z.
  35. [35] E.Tolouie and R. Jamaati, (2018) “Effect of–Mg17Al12 phase on microstructure, texture and mechanical proper ties of AZ91 alloy processed by asymmetric hot rolling" Materials Science and Engineering: A 738: 81–89. DOI: 10.1016/j.msea.2018.09.086.
  36. [36] Z. Yu, A. Tang, J. He, Z. Gao, J. She, J. Liu, and F. Pan, (2018) “Effect of high content of manganese on microstructure, texture and mechanical properties of magnesium alloy" Materials Characterization 136: 310–317. DOI: 10.1016/j.matchar.2017.12.029.
  37. [37] Z. Li, N. Huang, J. Zhao, and S. J. Zhou, (2013) “Microstructure, mechanical and degradation properties of equal channel angular pressed pure magnesium for biomedical application" Materials Science and Technology 29: 140–147. DOI: 10.1179/1743284712Y. 0000000148.
  38. [38] Y. Wang, G. Liu, and Z. Fan, (2006) “Microstructural evolution of rheo-diecast AZ91D magnesium alloy during heat treatment" Acta Materialia 54: 689–699. DOI: 10. 1016/j.actamat.2005.09.033.
  39. [39] M. Li, Q. Guo, L. Chen, L. Li, H. Hou, and Y. Zhao, (2022) “Microstructure and properties of graphene nanoplatelets reinforced AZ91D matrix composites prepared by electromagnetic stirring casting" Journal of Materials Research and Technology 21: 4138–4150.
  40. [40] S. Gotagunaki, V. S. Mudakappanavar, and R. Suresh, (2023) “Studies on the mechanical properties and wear behavior of an AZ91D magnesium metal matrix composite utilizing the stir casting method" Metallography, Microstructure, and Analysis 12: 986–998. DOI: 10.1007/s13632-023-01017-2.
  41. [41] J. Qi, Z. Ye, N. Gong, X. Qu, D. Mercier, and J. ´ Swiatowska, (2021) “Formation of a trivalent chromium con version coating on AZ91D magnesium alloy" Corrosion Science 186: 109459. DOI: 10.1016/j.corsci.2021.109459.
  42. [42] K. Monkova, M. Vasina, M. Zaludek, P. P. Monka, and J. Tkac, (2021) “Mechanical Vibration Damping and Compression Properties of a Lattice Structure" Materials 14: 1502. DOI: 10.3390/ma14061502.
  43. [43] H. Zhang, X. Wang, Z. Shi, J. Xue, and F. Han, (2021) “Compressive and Energy Absorption Properties of Pyramidal Lattice Structures by Various Preparation Methods" Materials 14: 6484. DOI: 10.3390/ma14216484.
  44. [44] M. Araghi, H. Rokhgireh, and A. Nayebi, (2023) “Experimental and FEM investigation of BCC lattice structure under compression test by using continuum damage mechanics with micro-defect closure effect" Materials & Design 232: 112125. DOI: 10.1016/j.matdes.2023.112125.
  45. [45] J. Cheng, M. Gussev, J. Allen, X. Hu, A. R. Moustafa, D. A. Splitter, and A. Shyam, (2020) “Deformation and failure of PrintCast A356/316 L composites: Digital image correlation and finite element modeling" Materials &Design 195: 109061. DOI: 10.1016/j.matdes.2020.109061.
  46. [46] X. Wang, J. Xia, J. H. Park, X. Xie, and G. Chen, (2024) “Event-Triggered Adaptive Tracking With Guar anteed Transient Performance for Switched Nonlinear Systems Under Asynchronous Switching" IEEE Transactions on Cybernetics 54: 496–505. DOI: 10.1109/ TCYB.2022.3223983.
  47. [47] X. Wang, J. Xia, J. H. Park, X. Xie, and G. Chen, (2022) “Intelligent Control of Performance Constrained Switched Nonlinear Systems With Random Noises and Its Application: An Event-Driven Approach" IEEE Transactions on Circuits and Systems I: Regular Papers 69: 3736 3747. DOI: 10.1109/TCSI.2022.3175748.