Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Miao Liang1, Jiahui Zhang1, Baozhi Li2, Qi Fu2, Yaning Hu1, Zhaohui Ren2, Ruili Li1, Chengzhe Cui2This email address is being protected from spambots. You need JavaScript enabled to view it., and Junsong Zhang1This email address is being protected from spambots. You need JavaScript enabled to view it.

1College of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China

2Technology Center, Jilin Tobacco Industrial Co., Ltd., Changchun, 130031, P. R. China


 

Received: August 30, 2024
Accepted: May 2, 2025
Publication Date: May 30, 2025

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202602_29(2).0011  


Study on the pyrolysis behavior of reconstituted tobacco cut stem (RTCS), a new developed cigarette material produced from the abundant wasted tobacco stem, is beneficial for the quality controlling of RTCS during its production process. In this study, the structural characterization and pyrolysis characteristics of RTCS in processing were investigated. Analysis of apparent morphology and chemical composition indicated that key processing steps exhibited significant impact on the color and main components of RTCS samples. FTIR and SEM characterization indicated the surface functional groups and microstructure of RTCS samples experienced varying degrees of change during the extraction and backfilling process. Thermogravimetric analysis showed that the decomposition process of RTCS can be divided into four stages, namely (I) water removal stage, (II) volatilization of small molecular with low boiling points and decomposition of hemicelluloses, (III) decomposition of cellulose, (IV) decomposition of lignin and carbonization. The extraction treatment increased the Ti (from 231.2C to 282.6C), Ti (from 353.3C to 369.3C) and DTG max (from 7.53%/min to 13.90%/min) in Stage III, and the CPI (Comprehensive Pyrolysis Index) for TS-E (Tobacco Stem-Extraction) and TS-R (Tobacco Stem-Reconstituted) was improved as compared with that of TS-B (Tobacco Stem-Blank) owing to the removal and backfilling of volatile components as well as the changed microstructure. On-line FTIR and GC-MS analysis of the released pyrolytic gaseous products of different RTCS samples was different from each other in terms of release temperature and release amount. The pyrolysis kinetics and thermodynamics analysis showed the extraction and backfilling treatment of RTCS decreased the activation energy, enthalpy and entropy of the original tobacco stem.


Keywords: Reconstituted tobacco cut stem; Pyrolysis characteristics; Pyrolysis kinetics; TG-FTIR; Pyrolysis products


 

 

  1. [1] X. Wang, Z. Wang, Y. Dai, K.-y. Ma, L. Zhu, and H. Tan, (2017)“Thermogravimetric study on the flue cured tobaccol eaf pyrolysis and combustion using adis tributed activation energy model" Asia-Pacific Journal ofChemicalEngineering12:75–84.
  2. [2] J. Cai, B. Li, C. Chen, J. Wang, M. Zhao, and K. Zhang, (2016)“Hydrothermalcarbonizationoftobaccostalkfor fuelapplication"BioresourceTechnology220:305 311.DOI:10.1016/j.biortech.2016.08.098.
  3. [3] C. Kunlin, H. Feng, Z. Yanguo, and L. Qinghai,(2019) “The investigation of co-combustion characteristics of tobacco stalk and low rank coal using amacro-TGA" Fuel 237:126–132.DOI:10.1016/j.fuel.2018.09.149.
  4. [4] H. Chen, G. Lin, C. Yingquan, W. Chen, and Y. Haiping, (2015) “Biomass Pyrolytic Polygeneration of Tobacco Waste: Product Characteristics and Nitrogen Trans formation"Energy&Fuels30:DOI: 10.1021/acs.energyfuels.5b02255.
  5. [5] C.Wang, L. Li, R. Chen, X. Ma, M. Lu, W. Ma, and H. Peng, (2019) “Thermal conversion of tobacco stem into gaseous products" Journal of Thermal Analysis and Calorimetry 137(3): 811–823. DOI: 10.1007/s10973 019-08010-4.
  6. [6] Y. J. Sung and Y. B. Seo, (2009) “Thermogravimetric study on stem biomass of Nicotiana tabacum" Thermochimica Acta 486(1): 1–4. DOI: 10.1016/j.tca.2008.12.010.
  7. [7] M. Liang, T. Yang, G. Zhang, K. Zhang, L. Wang, R. Li, Y. He, J. Wang, and J. Zhang, (2023) “Effects of hydrochloric acid washing on the structure and pyrol ysis characteristics of tobacco stalk" Biomass Conver sion and Biorefinery 13(8): 6817–6830. DOI: 10.1007/s13399-021-01616-5.
  8. [8] K.Cen,J. Zhang, Z. Ma, D.Chen, J. Zhou, and H. Ma, (2019) “Investigation of the relevance between biomass pyrolysis polygeneration and washing pretreatment under different severities: Water, dilute acid solution and aque ous phase bio-oil" Bioresource Technology 278: 26–33. DOI: 10.1016/j.biortech.2019.01.048.
  9. [9] N. Khuenkaeo, B. MacQueen, T. Onsree, S. Daiya, N. Tippayawong, and J. A. Lauterbach, (2020) “Bio oils from vacuum ablative pyrolysis of torrefied tobacco residues" RSC Advances 10: 34986–34995.
  10. [10] Z. Li, D. Huang, Z. Tang, C. Deng, and X. Zhang, (2010) “Fast determination of chlorogenic acid in tobacco residues using microwave-assisted extraction and capillary zone electrophoresis technique" Talanta 82 4: 1181 5.
  11. [11] A. de Lucas, P. Cañizares, M. A. García, J. Gómez, and J. F. Rodríguez, (1998) “Recovery of Nicotine from Aqueous Extracts of Tobacco Wastes by an H+-Form Strong-Acid Ion Exchanger" Industrial & Engineering Chemistry Research 37(12): 4783–4791. DOI: 10.1021/ie9801958.
  12. [12] Y. Li, L. Wan, M. Yan, X. Tang, S. Gao, and Y. Chen, (2023) “Recycling of tobacco waste: development of re constituted tobacco sheet with suitable strength and low toxicity" Resources, Conservation & Recycling Advances:
  13. [13] S. Zhou, Q. He, X. Wang, M. Ning, Y. Yang, Y. Xu, Y. Zhang, P. Zou, Z. Tian, K. Chen, H. Wang, and S. She, (2017) “An insight into the roles of exogenous potassium salts on the thermal degradation of flue-cured tobacco" Journal of Analytical and Applied Pyrolysis 123: 385–394. DOI: 10.1016/j.jaap.2016.11.001.
  14. [14] S. Zhou, M. Ning, Y. Xu, Y. Hu, J. Shu, C. Wang, S. Ge, Z. Tian, S.-k. She, and H. Qing, (2013) “Thermal degradation and combustion behavior of reconstituted tobacco sheet treated with ammonium polyphosphate" Journal of Analytical Applied Pyrolysis 100: 223–229.
  15. [15] A. Sluiter, B. Hames, R. O. Ruiz, C. Scarlata, and D. Templeton, (2004) “Determination of structural carbo hydrates and lignin in biomass" Laboratory Analytical Proce dure:
  16. [16] G. K. Parshetti, S. Kent Hoekman, and R. Balasubra manian, (2013) “Chemical, structural and combustion characteristics of carbonaceous products obtained by hydrothermal carbonization of palm empty fruit bunches" Bioresource technology 135: 683–9.
  17. [17] Y. Fan, L. Li, N. Tippayawong, S. Xia, F. Cao, X. Yang, A. Zheng, Z. Zhao, and H. Li, (2019) “Quantitative structure-reactivity relationships for pyrolysis and gasi f ication of torrefied xylan" Energy 188: 116119. DOI: 10.1016/j.energy.2019.116119.
  18. [18] S. Ajouguim, K. Abdelouahdi, M. Waqif, M. Ste fanidou, and L. Saâdi, (2019) “Modifications of Alfa f ibers by alkali and hydrothermal treatment" Cellulose 26(3): 1503–1516. DOI: 10.1007/s10570-018-2181-9.
  19. [19] A. Gómez-Siurana, A. Marcilla, M. Beltrán, D. Berenguer, I. Martínez-Castellanos, and S. Menargues, (2013) “TGA/FTIR study of tobacco and glyc erol–tobacco mixtures" Thermochimica Acta 573: 146 157. DOI: 10.1016/j.tca.2013.09.007.
  20. [20] N. Shimada, H. Kawamoto, and S. Saka, (2008) “Different action of alkali/alkaline earth metal chlorides on cellulose pyrolysis" Journal of Analytical and Applied Pyrolysis 81(1): 80–87. DOI: 10.1016/j.jaap.2007.09. 005.
  21. [21] Z. Ma, D. Chen, J. Gu, B. Bao, and Q. Zhang, (2015) “Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA–FTIR and model-free integral methods" Energy Conversion and Management 89: 251–259. DOI: 10.1016/j.enconman.2014.09.074.
  22. [22] X. Li, Q. Zhao, M. Han, K. Zhang, Z. Guo, B. Li, W. Wang, X. Wei, and M. Liang, (2024) “Pyrolysis characteristics and kinetic analysis of tobacco stem pre treated with different solvents" Biomass Conversion and Biorefinery 14(1): 501–515. DOI: 10.1007/s13399 021-02280-5.
  23. [23] G. Pin, Z. Yiyuan, M. Fang, Z. Yihui, L. Zhenhong, Z. Wenqi, and X. Gang, (2016) “Preparation and characterization of hydrochar from waste eucalyptus bark by hydrothermal carbonization" Energy 97: 238–245. DOI: 10.1016/j.energy.2015.12.123.
  24. [24] L. Yanfen and M. Xiaoqian, (2010) “Thermogravimet ric analysis of the co-combustion of coal and paper mill sludge" Applied Energy 87(11): 3526–3532. DOI: 10. 1016/j.apenergy.2010.05.008.
  25. [25] W.-W. Tian, F. Xu, S.-J. Xing, R. Wu, and Z.-Y. Yuan, (2023) “Comprehensive study on the thermal decompo sition process of waste tobacco leaves and stems to investigate their bioenergy potential: Kinetic, thermodynamic, and biochar analysis" Thermochimica Acta 723: 179473. DOI: 10.1016/j.tca.2023.179473.
  26. [26] J.L.GoldfarbandS.Ceylan,(2015)“Second-generation sustainability: Application of the distributed activation energy model to the pyrolysis of locally sourced biomass–coal blends for use in co-firing scenarios" Fuel 160: 297–308. DOI: 10.1016/j.fuel.2015.07.071.
  27. [27] Z. Zhang, C. He, T. Sun, Z. Zhang, K. Song, Q. Wu, and Q. Zhang, (2016) “Thermo-physical properties of pretreated agricultural residues for bio-hydrogen production using thermo-gravimetric analysis" International Journal of Hydrogen Energy 41: 5234–5242.
  28. [28] Z. Wang, Z. He, Z. Zhao, S.-l. Yi, and J. Mu, (2017) “Influence of ultrasound-assisted extraction on the pyroly sis characteristics and kinetic parameters of eucalyptus" Ultrasonics sonochemistry 37: 47–55.
  29. [29] Z. Yıldız and S. Ceylan, (2019) “Pyrolysis of tobacco fac tory waste biomass" Journal of Thermal Analysis and Calorimetry 136(2): 783–794. DOI: 10.1007/s10973 018-7630-z.
  30. [30] C. Sun, Z. Yang, Z. Zheng, W. Li, H. Tan, Y. Huang, and Y. Zhang, (2023) “Exploring how lignin promoting the co-pyrolysis with polylactic acid: Artificial neural network modeling, kinetic analysis and product distribution" Sustainable Materials and Technologies 35: e00549. DOI: 10.1016/j.susmat.2022.e00549.
  31. [31] D. Daugaard and R. Brown, (2003) “Enthalpy for Pyrolysis for Several Types of Biomass" Energy & Fuels ENERGFUEL17: DOI:10.1021/ef020260x.
  32. [32] L. Moshan, T. Yishui, H. Erfeng, D. Chongyang, L. Chenhao, and S. S, (2022) “Pyrolysis kinetics and thermodynamic analysis of biogas residue and its pyrolysis product characteristics research" Acta Energiae Solaris Sinica 43(06): 226–233. DOI: 10.19912/j.0254-0096. tynxb.2021-1132.
  33. [33] J. Mao, C. Xiao, D. Gong, J. Zhu, and J. Qian, (2023) “Study on mechanism of cellulose hydrolysis during alkali thermal pretreatment of lignocellulose by density functional theory" Biomass and Bioenergy 172: 106754. DOI: 10.1016/j.biombioe.2023.106754.
  34. [34] R. Kaur, P. Gera, M. K. Jha, and T. Bhaskar, (2018) “Pyrolysis kinetics and thermodynamic parameters of cas tor (Ricinus communis) residue using thermogravimetric analysis" Bioresource Technology 250: 422–428. DOI: 10.1016/j.biortech.2017.11.077


    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.