Abaker A. Hassaballa1,2, Ali Satty2This email address is being protected from spambots. You need JavaScript enabled to view it., Mohyaldein Salih2, Ahmed M. A. Adam2, Omer M. A. Hamed3, Zakariya M. S. Mohammed1,2, Ashraf F. A. Mahmoud4,5, and Elzain A. E. Gumma2
1Center for Scientific Research and Entrepreneurship, Northern Border University, Arar, Saudi Arabia
2Department of Mathematics, College of Science, Northern Border University, Arar, Saud Arabia
3Department of Finance, College of Business Administration, Northern Border University, Arar, Saudi Arabia
4Translation, Authorship and Publication Center, Northern Border University, Arar, Saudi Arabia
5Department of Computer Science, College of Science, Northern Border University, Arar, Saudi Arabia
Received: January 6, 2025 Accepted: May 12, 2025 Publication Date: June 15, 2025
Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.
The article examines the fractional stochastic Korteweg-de Vries (FSKdV) equation, with a focus on space-time white noise and conformable fractional derivatives (CFD). The primary aim is to utilize the generalized Riccati equation mapping (GREM) method to derive soliton and soliton-like, periodic and rational solutions for the FSKdV equation, taking into account various conditions of space-time fractional order beside white noise as well. The acquired exact analytical solutions’ physical characteristics are elucidated through graphical illustrations, which clearly show the effects of changing the fractional order and including the stochastic term. The results confirm the GREM method’s reliability and effectiveness in solving the FSKdV equation.
[1] S. V. Lototsky and B. L. Rozovsky. Stochastic Partial Differential Equations. 11. Berlin: Springer, 2017.
[2] A.P. Browning, D. J. Warne, K. Burrage, R. E. Baker, and M.J. Simpson, (2020) “Identifiability Analysis for Stochastic Differential Equation Models in Systems Biology" Journal of the Royal Society Interface 17(173): 20200652. DOI: 10.1098/rsif.2020.0652.
[3] B. Oksendal. Stochastic Differential Equations: An Intro duction with Applications. Springer Science & Business Media, 2013.
[4] K. Sobczyk. Stochastic Differential Equations: With Ap plications to Physics and Engineering. 40. Springer Science & Business Media, 2013.
[5] Q. Lü and X. Zhang. Mathematical Control Theory for Stochastic Partial Differential Equations. 101. Cham: Springer, 2021.
[6] R. Y. Molliq, M. S. M. Noorani, I. Hashim, and R. R. Ahmad, (2009) “Approximate Solutions of Fractional Zakharov–Kuznetsov Equations by VIM" Journal of Computational and Applied Mathematics 233(2): 103–108. DOI: 10.1016/j.cam.2009.03.010.
[7] A. Korkmaz, (2017) “Exact Solutions to (3+1) Conformable Time Fractional Jimbo–Miwa, Za kharov–Kuznetsov and Modified Zakharov–Kuznetsov Equations" Communications in Theoretical Physics 67(5): 479.
[8] H. A. Ghany, (2013) “Exact Solutions for Stochas tic Fractional Zakharov-Kuznetsov Equations" Chinese Journal of Physics 51(5): 875–881. DOI: 10.6122/CJP.51.875.
[9] S. Sahoo and S. S. Ray, (2015) “Improved Fractional Sub-Equation Method for (3+1)-Dimensional Generalized Fractional KdV–Zakharov–Kuznetsov Equations" Computers & Mathematics with Applications 70(2): 158 166. DOI: 10.1016/j.camwa.2015.05.002.
[10] A. Yıldırım and Y. Gülkanat, (2010) “Analytical Approach to Fractional Zakharov–Kuznetsov Equations by He’s Homotopy Perturbation Method" Communications in Theoretical Physics 53(6): 1005. DOI: 10.1088/0253-6102/53/6/02.
[11] R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh, (2014) “A New Definition of Fractional Derivative" Journal of Computational and Applied Mathematics 264: 65–70. DOI: 10.1016/j.cam.2014.01.002.
[12] G. Jumarie, (2006) “Modified Riemann-Liouville Derivative and Fractional Taylor Series of Nondifferentiable Functions Further Results" Computers & Mathematics with Applications 51(9–10): 1367–1376. DOI: 10.1016/j.camwa.2006.02.001.
[13] G.Jumarie,(2009)“Table of Some Basic Fractional Calculus Formulae Derived from a Modified Riemann–Liouville Derivative for Non-Differentiable Functions" Applied Mathematics Letters 22(3): 378–385. DOI: 10.1016/j.aml.2008.06.003.
[14] M. Caputo and M. Fabrizio, (2015) “A New Definition of Fractional Derivative without Singular Kernel" Progress in Fractional Differentiation & Applications 1(2): 73–85.
[15] T. Mathanaranjan.“10-TheFractional Perturbed Non linear Schrödinger Equation in Nanofibers: Soliton Solutions and Dynamical Behaviors”. In: Computation and Modeling for Fractional Order Systems. 2024, 155–167. DOI: 10.1016/B978-0-44-315404-1.00015-1.
[16] T. Mathanaranjan, S. Tharsana, and G. Dilakshi, (2024) “Solitonic Wave Structures and Stability Analysis for the M-Fractional Generalized Coupled Nonlinear Schrödinger-KdV Equations" International Journal of Applied and Computational Mathematics 10: 165. DOI: 10.1007/s40819-024-01794-6.
[17] S. Tanaka, (1972) “Modified Korteweg-de Vries Equation and Scattering Theory" Proceedings of the Japan Academy 48(7): 466–469. DOI: 10.3792/pja/1195519590.
[18] J.-G. Liu, X.-J. Yang, Y.-Y. Feng, and L.-L. Geng, (2021) “Symmetry Analysis of the Generalized Space and Time Fractional Korteweg–de Vries Equation" International Journal of Geometric Methods in Modern Physics 18(14): 2150235. DOI: 10.1142/S0219887821502352.
[19] W. W. Mohammed, C. Cesarano, F. M. Al-Askar, and M. El-Morshedy, (2022) “Solitary Wave Solutions for the Stochastic Fractional-Space KdV in the Sense of the M-Truncated Derivative" Mathematics 10(24): 4792. DOI: 10.3390/math10244792.
[20] N. Wiener, (1923) “Differential-Space" Journal of Mathematics and Physics 2(1–4): 131–174. DOI: 10.1002/sapm192321131.
[21] S.-D. Zhu, (2008) “The Generalizing Riccati Equation Mapping Method in Non-Linear Evolution Equation: Ap plication to (2+1)-Dimensional Boiti–Leon–Pempinelle Equation" Chaos, Solitons & Fractals 37(5): 1335 1342. DOI: 10.1016/j.chaos.2006.10.015.
[22] N. Ahmed, M. Z. Baber, M. S. Iqbal, A. Annum, S. M. Ali, M. Ali, and S. M. El Din, (2023) “Analytical Study of Reaction Diffusion Lengyel-Epstein System by Generalized Riccati Equation Mapping Method" Scientific Reports 13(1): 20033. DOI: 10.1038/s41598-023-47207 4.
[23] M. D. Johansyah, A. K. Supriatna, E. Rusyaman, and J. E. I. Saputra, (2022) “The Existence and Unique ness of Riccati Fractional Differential Equation Solution and Its Approximation Applied to an Economic Growth Model" Mathematics 10(17): 3029. DOI: 10.3390/ math10173029.
[24] H. Naher and F. A. Abdullah, (2012) “New Travel ing Wave Solutions by the Extended Generalized Riccati Equation Mapping Method of the (2+1)-Dimensional Evo lution Equation" Journal of Applied Mathematics 2012: 486458. DOI: 10.1155/2012/486458.
[25] E. M. Zayed, Y. A. Amer, and R. M. Shohib, (2014) “The Improved Generalized Riccati Equation Mapping Method and Its Application for Solving a Nonlinear Par tial Differential Equation Describing the Dynamics of Ionic Currents along Microtubules" Scientific Research and Essays 9(8): 238–248. DOI: 10.5897/SRE2013.5772.
[26] A. M. Shahoot, K. A. E. Alurrfi, I. M. Hassan, and A. M. Almsri, (2018) “Solitons and Other Ex act Solutions for Two Nonlinear PDEs in Mathematical Physics Using the Generalized Projective Riccati Equa tions Method" Advances in Mathematical Physics 2018: 6870310. DOI: 10.1155/2018/6870310.
[27] Z. Manzoor, M. S. Iqbal, S. Hussain, et al., (2023) “A Study of Propagation of the Ultra-Short Femtosecond Pulses in an Optical Fiber by Using the Extended Generalized Riccati Equation Mapping Method" Optical and Quantum Electronics 55: 717. DOI: 10.1007/s11082 023-04934-2.
[28] O. Calin. An Informal Introduction to Stochastic Cal culus with Applications. Singapore: World Scientific Publishing Co. Pte. Ltd, 2015. DOI: 10.1142/9620.
We use cookies on this website to personalize content to improve your user experience and analyze our traffic. By using this site you agree to its use of cookies.