Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Renshui FanThis email address is being protected from spambots. You need JavaScript enabled to view it.

School of Foreign Languages, Zhengzhou University of Science and Technology, Zhengzhou 450064 China


 

 

Received: April 8, 2025
Accepted: May 27, 2025
Publication Date: June 15, 2025

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202603_29(3).0003  


Neural machine translation (NMT) has achieved remarkable results in sentence-level translation, but the text problems of sentence-level translation, such as consistency and reference, are solved by using context information. Different from the previous methods using source context modeling, this paper proposes a novel Chinese-English neural machine translation that integrates target context information based on deliberation network. Specifically, with the help of the deliberating network, this paper makes a second translation of the source end of the text. The first translation is based on sentence level translation, and the second translation refers to the first translation of the whole text. The integration of domain knowledge into the translation model improves the effect of the translation model. The experimental results show that compared with the baseline model, the BLEU values of the Chinese-English and English-Chinese models are increased by 1.28 and 2.08.


Keywords: Chinese-English neural machine translation; Target context information; Deliberation network; Domain knowledge


  1. [1] M. Al-Barham, I. Afyouni, K. Almubarak, A. Turky, I. A. T. Hashem, A. B. Nassif, I. Shahin, and A. Elnagar,(2025)“Unlockinglanguageboundaries:AraCLIP transforming Arabic language and image understanding throughcross-lingual models"Engineering ApplicationsofArtificialIntelligence151:110577. DOI:10.1016/j.engappai.2025.110577.
  2. [2] A. L. Tonja, O. Kolesnikova, A. Gelbukh, and G. Sidorov, (2023)“Low-resource neural machine translation improvement using source-sidemonolingual data" Applied Sciences 13(2): 1201. DOI: 10.3390/app13021201.
  3. [3] T. Z. Shah, M. Imran, and S. M. Ismail, (2024)“A diachronic study determining syntactic and semantic features of Urdu-English neural machine translation "He liyon10(1): DOI:10.1016/j.heliyon.2023.e22883.
  4. [4] Y. Sun, S. Yin, H. Li, L. Teng, and S. Karim, (2019) “GPOGC: Gaussian pigeon-oriented graph clustering algorithm for social network scluster"IEEEAccess7:99254 99262.DOI:10.1109/ACCESS.2019.2926816.
  5. [5] M. A. Faheem, K. T. Wassif, H. Bayomi, and S. M. Abdou,(2024)“Improvingneuralmachinetranslation for low resource languages through non-parallelcorpora:a casestudy of Egyptian dialect to modern standard Arabic translation"ScientificReports14(1):2265.DOI:10. 1038/s41598-023-51090-4.
  6. [6] D. A. Sulistyo, D. D. Prasetya, F. A. Ahda, and A. P. Wibawa, (2025)“Pivoted Low Resource Multilingual Translation with NER Optimization "ACM Journal of Data and Information Quality: DOI:10.1145/3727876.
  7. [7] B. Zhang, I. Titov, B. Haddow, and R. Sennrich.“Beyondsentence-levelend-to-end speech translation: Contexthelps”.In: The Joint Conference of the 59th Annual Meeting of the Association for Computational Lin guisticsandthe11thInternationalJointConferenceon Natural Language Processing. Association for Computational Linguistics. 2021,2566–2578. DOI:10.18653/v1/2021.acl-long.200.
  8. [8] K. Chen, R. Wang, M. Utiyama, E. Sumita, and T. Zhao,(2019)“Neural machine translation with sentence level topic context "IEEE/ACM Transactions on Au dio, Speech, and Language Processing27(12):1970 1984.DOI:10.1109/TASLP.2019.2937190.
  9. [9] M. Yang, R. Wang, K. Chen, X. Wang, T. Zhao, and M. Zhang,(2020) “A novel sentence-level agreement architecture for neural machine translation "IEEE/ACM Transactions on Audio, Speech, and Language Processing28:2585–2597.DOI:10.1109/TASLP.2020.3021347.
  10. [10] J. Smith, C. Quirk, and K. Toutanova. “Extracting parallel sentences from comparable corpora using document level alignment”. In: Human language technologies: The 2010 annual conference of the North American chapter of the Association for Computational Linguistics. 2010, 403–411. DOI: 10.3115/1690339.1690350.
  11. [11] H. Yun, Y. Hwang, and K. Jung. “Improving context aware neural machine translation using self-attentive sentence embedding”. In: Proceedings of the AAAI conference on artificial intelligence. 34. 05. 2020, 9498–9506. DOI: 10.1609/aaai.v34i05.6494.
  12. [12] J. Yu, L. Zhao, et al., (2021) “A novel deep CNN method based on aesthetic rule for user preferential images recommendation" Journal of Applied Science and Engineering 24(1): 49–55. DOI: 10.6180/jase.202102_24(1).0006.
  13. [13] S. Zhu, S. Li, and D. Xiong, (2024) “VisTFC: Vision guided target-side future context learning for neural ma chine translation" Expert Systems with Applications 249: 123411. DOI: 10.1016/j.eswa.2024.123411.
  14. [14] X. Zhu, Q. Ruan, S. Qian, and M. Zhang, (2025) “A hybrid model based on transformer and Mamba for enhanced sequence modeling" Scientific Reports 15(1): 11428. DOI: 10.1038/s41598-025-87574-8.
  15. [15] M. Bamoki, S. H. Wady, and S. Badawi, (2025) “Holy Quran Kurdish Sorani translation dataset for language modelling" Data in Brief 60: 111533. DOI: 10.1016/j.dib.2025.111533.
  16. [16] J. Choo, Y.-D. Kwon, J. Kim, J. Jae, A. Hottung, K. Tierney, and Y. Gwon, (2022) “Simulation-guided beam search for neural combinatorial optimization" Advances in Neural Information Processing Systems 35: 8760 8772. DOI: 10.48550/arXiv.2207.06190.
  17. [17] S. H. Ahammad, R. R. Kalangi, S. Nagendram, S. Inthiyaz, P. P. Priya, O. S. Faragallah, A. Mohammad, M. M. Eid, and A. N. Z. Rashed, (2024) “Improved neural machine translation using Natural Language Pro cessing (NLP)" Multimedia Tools and Applications 83(13): 39335–39348. DOI: 10.1007/s11042-023-17207-7.
  18. [18] M. E. San, S. Usanavasin, Y. K. Thu, and M. Oku mura,(2024) “A Study for Enhancing Low-resource Thai Myanmar-English Neural Machine Translation" ACM Transactions on Asian and Low-Resource Language Information Processing 23(4): 1–24. DOI: 10.1145/3645111.
  19. [19] S. C. Siu. “Revolutionising translation with AI: Unravelling neural machine translation and generative pre-trained large language models”. In: New advances in translation technology: Applications and pedagogy. Springer, 2024, 29–54. DOI: 10.1007/978-981-97 2958-6_3.
  20. [20] S. Bala Das, D. Panda, T. Kumar Mishra, B. Kr. Patra, and A. Ekbal, (2024) “Multilingual neural machine translation for indic to indic languages" ACM Transactions on Asian and Low-Resource Language Infor mation Processing 23(5): 1–32. DOI: 10.1145/3652026.
  21. [21] G. Lin, A. Milan, C. Shen, and I. Reid. “Refinenet: Multi-path refinement networks for high-resolution semantic segmentation”. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017, 1925–1934. DOI: 10.1109/CVPR.2017.549.
  22. [22] Y. Xia, F. Tian, L. Wu, J. Lin, T. Qin, N. Yu, and T.-Y. Liu, (2017) “Deliberation networks: Sequence generation beyond one-pass decoding" Advances in neural information processing systems 30:
  23. [23] H. Li, Z. Li, X. Wang, M. Ibrar, and X. Zhu, (2024) “Multi-keyword Ciphertext Sorting Search Based on Con formation Graph Convolution Model and Transformer Network in English Education" International Journal of Network Security 26(4): 555–564. DOI: 10.6633/IJNS.202407_26(4).03.
  24. [24] J. Tiedemann, M. Aulamo, D. Bakshandaeva, M. Boggia, S.-A. Grönroos, T. Nieminen, A. Raganato, Y. Scherrer, R. Vázquez, and S. Virpioja, (2024) “Democratizing neural machine translation with OPUS-MT" Language Resources and Evaluation 58(2): 713–755. DOI: 10.1007/s10579-023-09704-w.
  25. [25] Z.-M. Gao, (2011) “Exploring the effects and use of a Chinese–English parallel concordancer" Computer Assisted Language Learning 24(3): 255–275. DOI: 10.1080/09588221.2010.540469.
  26. [26] A.-M. De Cesare, A. Albom, D. Cimmino, and M. L. Spagnolo, (2020) “Domain adverbials in the news: A corpus-based contrastive study of English, German, French, Italian and Spanish" Languages in Contrast 20(1): 31–57. DOI: 10.1075/lic.17005.dec.
  27. [27] F. H. Rachman, M. W. M. A. Syauqi, N. Ifada, S. Wahyuni, et al., (2025) “Transformer Hyperparameter Tuning for Madurese-Indonesian Machine Translation" Engineering, Technology & Applied Science Research 15(2): 22216–22225. DOI: 10.48084/etasr.9851.
  28. [28] Z. Hongying, A. Javed, M. Abdullah, J. Rashid, and M. Faheem, (2025) “Large Language Models With Contrastive Decoding Algorithm for Hallucination Mitigation in Low-Resource Languages" CAAI Transactions on Intelligence Technology: e70004. DOI: 10.1049/cit2.70004.
  29. [29] B. Li, Y. Weng, F. Xia, and H. Deng, (2024) “Towards better Chinese-centric neural machine translation for low resource languages" Computer Speech & Language 84: 101566. DOI: 10.1016/j.csl.2023.101566.
  30. [30] X. Meng, X. Wang, S. Yin, and H. Li, (2023) “Few-shot image classification algorithm based on attention mechanism and weight fusion" Journal of Engineering and Applied Science 70(1): 14. DOI: 10.1186/s44147-023-00186-9.


    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.