Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

N.F. Zikrillaev, Kh.M. Iliev, G.A. KushievThis email address is being protected from spambots. You need JavaScript enabled to view it., S.B. Isamov, S.V. Koveshnikov, B.A. Abdurakhmanov, and B.O. Isakov

Tashkent State Technical University named after Islam Karimov, Uzbekistan, 100095, Tashkent, Universitetskaya st.2


 

 

Received: February 3, 2025
Accepted: June 2, 2025
Publication Date: July 11, 2025

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202603_29(3).0019  


The paper presents the results of studying GexSi1−x structures obtained using low-temperature diffusion technology. The presence of clusters and their composition in the silicon lattice is determined by electron microscopy and X-ray spectroscopy. The results showed that germanium atoms in the lattice are collected in the form of round islands containing Si−64.46%, Ge−26.9%. Between the silicon crystal and the islands there are GexSi1−x structures that can affect the photoelectric properties of silicon. It is of interest to study the parameters of solar cells in the presence of such structures. Solar cells containing GexSi1−x structures with a p-n junction depth of 6÷8µ m on the surface of p-type silicon with 0.5Ω· m were obtained. The concentration of GexSi1−x structures was N ≈ 5.61019 cm−3, while the distance between the island structures was on average 1-2 µm. This distance is much smaller than the distance between the current-collecting contacts. Experiments have shown that the spectral sensitivity of the studied photocells with GexSi1−x structures expands toward the infrared region of the solar spectrum. This is explained by the absorption of photons by microheterovariband GexSi1−x −Si structures.


Keywords: Photovoltaics; Efficiency, silicon; Renewable energy; Solar cells; Heterovarigated band structure; Diffusion; Germanium


  1. [1] X. Li, P. Li, Z. Wu, D. Luo, H.-Y. Yu, and Z.-H. Lu, (2020) “Review and perspective of materials for flexible solar cells" Materials Reports: Energy 1(1): 100001. DOI: 10.1016/j.matre.2020.09.001.
  2. [2] A. Singh, J. Tiwari, A. Yadav, and R. Jha,(2015) “MAT LAB User Interface for Simulation of Silicon Germanium Solar Cell" Journal of Materials: 1–6. DOI: 10.1155/2015/840718.
  3. [3] K. Mukul and S. Choudhary, (2012) “Ge-content De pendent Efficiency of Si/SiGe Heterojunction Solar cell" Applied Physics A 112(3): 1–9. DOI: 10.1007/s00339 013-7761-9.
  4. [4] J. Humlíˇcek, M. Garriga, M. I. Alonso, and M. Car dona, (1989) “Optical spectrum of SixGe1-x alloys" Journal ofAppliedPhysic65(7):2827–2832. DOI:10.1063/1.342720.
  5. [5] A. Leiderman, A. Saidov, and A. Karshiev, (2016) “The thermoelectric effect in a graded-gap nSi–p Si1–xGex heterostructure" Applied Solar Energy 52(2): 115–117.
  6. [6] G. Yang, X. Huang, and B. Wang, (2018) “Fabrication and Anti-Oxidation Ability of SiC-SiO2 Coated Carbon Fibers Using Sol-Gel Method" Materials 11(3): 350. DOI: 10.3390/ma11030350.
  7. [7] X. Sun, H. Guo, Y. Zhang, X. Li, and Z. Cao, (2021) “Effects of Carbon Impurity in Monocrystalline Silicon on Electrical Properties and the Mechanism Analysis of PIN Rectifier Diodes" IEEE Access: DOI: 10.1109/ACCESS.2021.3055279.
  8. [8] B. Jalali and S. Fathpour, (2006) “Silicon photonics" Journal of light wave technology 24(12): 4600–4615. DOI: 10.1109/mmw.2006.1638290.
  9. [9] N. Morozova, I. Korobeinikov, N. Abrosimov, and S. Ovsyannikov, (2020) “Controlling the thermoelectric power of silicon–germanium alloys in different crystalline phases by applying high pressure" Cryst Eng Comm: DOI: 10.1039/d0ce00672f.
  10. [10] B.Cook,(2022) “Silicon–Germanium– The Legacy Lives On" Energies 15(8): 2957. DOI: 10.3390/en15082957.
  11. [11] M. Das and S. Choudhary. “Ge-content dependent efficiency of Si/SiGe heterojunction solar cell”. In: Proceeding of the Photonics Global Conference (PGC ’12). Singapore, 2012, 1–4.
  12. [12] Y. Bogumilowicz, J.-M. Hartmann, F. Laugier, G. Rol land, T. Billon, V. Renard, E. Olshanetsky, O. Es tibals, Z. Kvon, and J. Portal, (2003) “Reduced Pressure Chemical Vapor Deposition of high Ge content (20%-55%) SiGe virtual substrates" MRS Online Proceedings Li brary 809(1): 19.
  13. [13] D. Duveau, B. Fraisse, L. Cunin, and L. Monconduit, (2015) “Synergistic Effects of Ge and Si on the Perfor mance and Mechanism of the GexSi1–x Electrodes for Li Ion Batteries" Chemistry of Materials 27(9): 3226 3233. DOI: 10.1021/cm504413g.
  14. [14] N. Zikrillaev, G. Kushiev, S. Isamov, B. Abdu rakhmanov, and O. Tursunov, (2023) “Photovoltaic Properties of Silicon Doped with Manganese and Germa nium"Journal ofNano-andElectronicPhysics15(1): 01021. DOI: 10.21272/jnep.15(1).01021.
  15. [15] N. Zikrillaev, G. Kushiev, S. Koveshnikov, B. Abdu rakhmanov, U. Kurbanova, and A. Sattorov, (2023) “Current status of silicon studies with GexSi1-x binary compounds and possibilities of their applications in elec tronics" East European Journal of Physics (3): 334 339. DOI: 10.26565/2312-4334-2024-2-48.
  16. [16] A. Singh, M. Kumar, D. Kumar, and S. Singh, (2020) “Heterostructure Silicon and Germanium Alloy Based Thin Film Solar Cell Efficiency Analysis" IJ Engineering and Manufacturing 2: 29–40. DOI: 10.5815/ijem.2020.02.03.
  17. [17] B. Abdurakhmanov, K. Iliev, S. Tachilin, and A. To shev, (2012) “Silicon Solar Cells with Si–Ge Microhetero junctions" Mikroelektronika 41(3): 188–190. DOI: 10.1134/S1063739712020023.
  18. [18] N. Zikrillaev, G. Kushiev, S. Hamrokulov, and Y. Abduganiev, (2023) “Optical Properties of GexSi1-x binary compounds in silicon" Journal of Nano- and Electronic Physics 15(3): 03024-1- 03024–4. DOI: 10.21272/jnep.15(3).03024.
  19. [19] M. Bakhadirkhanov, B. Abdurakhmanov, and H. Zikrillaev, (2018) “On the state of germanium in silicon under conditions of low-temperature diffusion" Devices (5): 39–43.
  20. [20] L. Miglio and F. Montalenti. “Modeling the evolution of germanium islands on silicon (001) thin films”. In: Silicon–Germanium (SiGe) Nanostructures. 2011, 211 246. DOI: 10.1533/9780857091420.2.211.
  21. [21] N. Guerram, M. Guervara, C. Palacios, and F. Crupi, (2018) “Operation and Physics of Photovoltaic Solar Cells: an overview" Revista de I+D Tecnológico 14(2): 84 95. DOI: 10.33412/idt.v14.2.2077.
  22. [22] D. Paul, P. See, and I. Zozoulenko, (2000) “Si/SiGe electron resonant tunneling diodes" Applied Physics Letters 77: 1653. DOI: 10.1063/1.1309020.
  23. [23] K. Kacha, F. Djeffal, T. Bentrcia, M. Meguellati, and M. Chahdi. “Improving the Efficiency of Thin-film SiGe Solar Cells Through the Optimization of Intrin sic Layer Parameters”. In: Proceedings of the World Congress on Engineering. 1. 2014, 1–3.


    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.