Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Ahmed Ghanawi JasimThis email address is being protected from spambots. You need JavaScript enabled to view it.

University of Thi-Qar, Faculty of Computer Science and Mathematics, Mathematics Department, Iraq


 

Received: May 17, 2025
Accepted: August 15, 2025
Publication Date: October 24, 2025

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202606_29(6).0008  


Abstract. This work explores a specific category of contraction mappings characterized by rational- type within the framework of fuzzy Fréchet spaces(FFS). By utilizing the triangular inequality associated with fuzzy semi norms, we establish fixed point results relevant to these mappings. As an application, we analyze an integral operator formulated in the FFS setting and prove the existence and uniqueness of its solution. This study concludes with an integral-type example that illustrates the effectiveness of rational fuzzy Fréchet contractions in solving operator equations.


Keywords: Rational type fuzzy Fréchet-contraction; Fuzzy Fréchet space; Fixed point


  1. [1] S. Banach, (1922) "Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales," Fundamenta mathematicae 3(1): 133–181. DOI: eudml.org/doc/213289.
  2. [2] A. G. Jasim and Z. Al-Nafie. (2022) "Some fixed point theorems in fuzzy Fréchet manifold". In: Proceeding of the 1st international conference on advanced research in pure and applied science (ICARPAS2021) Third Annual Conference of Al-Muthanna University/College of Science. 2398: 1. AIP Publishing LLC. 060007. DOI: 10.1063/5.0095582.
  3. [3] A. G. Jasim, A. A. Sangoor, A. S. Mohammed, T. H. Dahess, and A. H. Kamil, (2024) "Common fixed point theorem in fuzzy Fréchet space" Journal of Interdisciplinary Mathematics 27(4): 843–847. DOI: 10.47974/JIM-1881.
  4. [4] C. S. Rao, S. R. Kumar, and K. Sarma, (2024) "Fixed Point Theorems On 4-Dimensional Ball Metric Spaces And Their Applications" Journal of Applied Science and Engineering 27(11): 3583–3588. DOI: 10.6180/jase.202411_27(11).0014.
  5. [5] R. I. Sabri and B. A. A. H. Ahmed, (2023) "Best proximity point results in fuzzy normed spaces" Science and Technology Indonesia 8(2): 298–304. DOI: 10.26554/sti.2023.8.2.298-304.
  6. [6] A. Karlsson, (2024) "A metric fixed point theorem and some of its applications" Geometric and Functional Analysis 34(2): 486–511. DOI: 10.1007/s00039-024-00658-x.
  7. [7] R. I. Sabri, (2025) "N*-Iteration Approach For Approximation Of Fixed Points In Uniformly Convex Banach Space" Journal of Applied Science and Engineering 28(8): 1671–1678. DOI: 10.6180/jase.202508_28(8).0005.
  8. [8] S. Dhenakaran, E. Naganathan, and C. Ganesamoorthy, (2024) "Multiple symmetric keys using Banach fixed point theorem" Journal of Discrete Mathematical Sciences and Cryptography 27(5): 579–587. DOI: 10.1080/09720529.2024.10698210.
  9. [9] L. A. Zadeh, (1965) "Fuzzy sets" Information and control 8(3): 338–353. DOI: S001999586590241X.
  10. [10] A. Katsaras, (1984) "Fuzzy topological vector spaces I" Fuzzy sets and systems 12(2): 143–154. DOI: 0165011484900344.
  11. [11] I. Sadeqi and F. S. Kia, (2009) “Fuzzy normed linear space and its topological structure" Chaos, Solitons & Fractals 40(5): 2576–2589. DOI: 10.1016/j.chaos.2007.10.051.
  12. [12] A. G. Jasim and Z. Al-Nafie. “Fréchet spaces via fuzzy structures”. In: Journal of Physics: Conference Series. 1818. 1. IOP Publishing. 2021, 012082. DOI: 10.1088/1742-6596/1818/1/012082.
  13. [13] A. G. Jasim and Z. Al-Nafie. “Fuzzy Fréchet Man ifold”. In: Journal of Physics: Conference Series. 1818. 1. IOP Publishing. 2021, 012064. DOI: 10.1088/1742-6596/1818/1/012064.
  14. [14] J. Shamoona, U. R. Saif, Z. Zhiming, and W. Wei, (2020) “Weakly compatible and quasi-contraction re sults in fuzzy cone metric spaces with application to the Urysohn type integral equations" Advances in Contin uous and Discrete Models 2020(1): DOI: 10.1186/s13662-020-02743-5.
  15. [15] B. Schweizer, A. Sklar, et al., (1960) “Statistical metric spaces" Pacific J. Math 10(1): 313–334. DOI: 10.2140/ pjm.1960.10.313


    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.