Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Cuizhuo Yu1This email address is being protected from spambots. You need JavaScript enabled to view it., Xiao Han1, Qisong Zhu1, and Minmin Li1

1Ningbo Electric Power Design Institute Co., Ltd., NingBo, ZheJiang, China, 315000


 

Received: September 12, 2025
Accepted: December 1, 2025
Publication Date: February 3, 2026

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202608_31.012  


In this paper, an improved antcolonyalgorithm (ACA) is suggested for the management of secondary cables and primary cable laying in complex environments. The method creates a digital representation of the region where the cable is laid, formulates a multiobjective function with path length, interference risk, and path tortuosity variables, and puts on engineering restrictions that connect the parts, bending radius, and the distance for safety. The upgraded ACA features a dynamic pheromone update with adaptable parameters that allow for a proper mixture of exploration and convergence, thus avoiding the algorithm being trapped in local optima and enhancing global search productivity. The simulation outcomes validate that the suggested technique maintains 100%pathconnectivity and simultaneously results in a constraint redundancy of below 10%. It also gives shorter and smoother paths compared to the classical methods. The major contributions are a constraint-integrated optimization frame, a dynamic pheromone reward-penalty system, and adaptive parameter setting, which together form a robust and effective solution for smart cable routing in challenging engineering environments.


Keywords: Improved Ant Colony Optimization Algorithm; Secondary Cables; Path Planning; Objective Function; Constraint Conditions


  1. [1] L. Dong, R. Zhang, J. Wang, J. Li, S. Wang, and X. Wang, (2025) “Research on the path planning algorithm and obstacle-crossing motion planning strategy for a cable trench inspection robot" Robotica 43(2): 438–448. DOI: 10.1017/S0263574724001930.
  2. [2] A. Monguzzi, T. Dotti, L. Fattorelli, A. M. Zanchet tin, and P. Rocco, (2025) “Optimal model-based path planning for the robotic manipulation of deformable linear objects" Robotics and Computer-Integrated Manufacturing 92: 1–16. DOI: 10.1016/j.rcim.2024.102891.
  3. [3] S. Harms, C. G. Bizcocho, H. Wakizono, K. Murasaki, H.Kawagoe,andK.Nagaoka,(2024)“Tetherbot:experimental demonstration and path planning of cable-driven climbing in microgravity" Robotics 13(9): 130–131. DOI: 10.3390/robotics13090130.
  4. [4] X. Guo, J. Chen, and Z. Li, (2024) “Multi-objective hybrid ACO–PSO algorithm for 3D cable harness routing optimization" Applied Soft Computing 156: 111045. DOI: 10.1016/j.oceaneng.2023.114772.
  5. [5] P. Singh and N. Rani, (2023) “Adaptive differential evolution algorithm for optimizing electrical wiring layouts" Expert Systems with Applications 235: 121028. DOI: 10.35940/ijrte.D8084.118419.
  6. [6] A. Dinesh and J. Rangaraj, (2025) “An energy-efficient routing protocol for wireless body area networks using hybrid artificial bee colony optimization and chicken swarm optimization algorithm" Journal of Engineering and Applied Science 72(1): 1–37.
  7. [7] Q. Liu, Y. Zhang, and T. He, (2025) “Adaptive hybrid ACO with deep reinforcement learning for complex routing design" Engineering Applications of Artificial Intelligence 136: 108999. DOI: 10.1016/j.procs.2024. 12.041.
  8. [8] X. Jiang and B. Huang, (2023) “Global Path Planning Of Fixed-wing UAV Based On Improved RRT* Algorithm" Journal of Applied Science and Engineering 26(10): 1441–1450.
  9. [9] Z. Su, Y. Xiang, J. Sheng, D. Li, and S. Wang, (2024) “SPH-DEM modeling of cable-controlled ROVs: under water mobility and path planning" Ocean Engineering 292: 1.1–1.12. DOI: 10.1016/j.oceaneng.2023.116623.
  10. [10] K. H. Mahmoud, A. N. Sharkawy, and G. T. Abdel Jaber, (2023) “Development of safety method for a 3-DOF industrial robot based on recurrent neural network" Journal of Engineering and Applied Science 70(1): 44.
  11. [11] P. Punitha, C. B. Sivaparthipan, M. BalaAnand, and R. Lakshmana Kumar, (2024) “A policy configured resource management scheme for AHNS using link reliability K-means clustering algorithm and Weibull distribution-based blue monkey optimization" International Journal of Communication Systems 37(12): e5850.
  12. [12] T. Wang, Z. Wang, B. Moran, X. Wang, and M. Zuk erman, (2024) “Evaluating and refining undersea cable path planning algorithms: a comparative study" PLOS ONE19(12): 315074–315075. DOI: 10.1371/journal.pone.0315074.
  13. [13] T. Ganesan, M. Almusawi, K. Sudhakar, B. R. Sathishkumar, and K. S. Kumar, (2024) “Resource allocation and task scheduling in cloud computing using improved bat and modified social group optimization" Proceedings of the Second International Conference on Networks, Multimedia and Information Technology (NMITCON): 1–5. DOI: 10.1109/NMITCON62075.2024.10699250.
  14. [14] K. Almaghout andA.Klimchik, (2024) “Manipulation planning for cable shape control" Robotics 13(1): 18–20. DOI: 10.3390/robotics13010018.
  15. [15] P. Dong, F. Guo, C. Chen, X. Song, H. Wang, P. Bai, et al., (2023) “Cable Laying Path Planning Based on Optimized Ant Colony Algorithm" Journal of Information and Computing Science 18(1): 67–80. DOI: 10.4208/JICS-2023-005.
  16. [16] H. Park and R. Storch, (2024) “Automatic Cable Routing Based on Improved Pathfinding Algorithm" Journal of Computational Design and Engineering 11(5): 303–315. DOI: 10.1093/jcde/7810276.
  17. [17] W. Xin, J. Smith, Y. Li, et al., (2023) “A–Ant Colony Optimization Algorithm for Multi-Branch Wire Har ness Layouts" Electronics 13(3): 529. DOI: 10.3390/electronics13030529.
  18. [18] B. Wang, C. Hua, H. Luo, B. Suo, and G. Zu, (2024) “Research on transmission line path planning model based on TFN-AHP and ACO "IET Generation, Transmission & Distribution 18(13): 2373–2381. DOI: 10.1049/gtd2.13208.
  19. [19] S. Szénási and I. Harmati, (2024) “Path planning for data collection multiagent system with priority and moving nodes in a sensing field with obstacles" Periodica Polytechnica Electrical Engineering & Computer Science 68(3): 309–318. DOI: 10.3311/PPee.22788.
  20. [20] Rzemyslaw and Aník, (2023) “Metaheuristic approach to optimal power flow using mixed integer distributed ant colony optimization" Archives of Electrical Engineering 69(2): 335–348. DOI: 10.24425/aee.2020.133029.
  21. [21] P. Dong, F. Guo, C. Chen, X. Song, H. Wang, P. Bai, H. Qi, Y. Qian, H. Zhang, and Y. Han, (2023) “Cable Laying Path Planning Based on Optimized Ant Colony Algorithm" Journal of Information and Computing Science 18(1): 67–80. DOI: 10.4208/JICS-2023-005.
  22. [22] H. Park and R. Storch, (2024) “Automatic cable routing based on improved pathfinding algorithm" Journal of Computational Design and Engineering 11(5): 303 315. DOI: 10.1093/jcde/7810276.
  23. [23] W. Xin, J. Smith, Y. Li, et al., (2023) “A*–Ant Colony Optimization Algorithm for Multi-Branch Wire Har ness Layouts" Electronics 13(3): 529. DOI: 10.3390/ electronics13030529.
  24. [24] N. K. Musham and R. Hemnath, (2021) “Real-time path planning for IoT-enabled autonomous vehicle robotics using RRT and A* algorithms" International Journal of Multidisciplinary Research and Explorer 1(7): 65.
  25. [25] D.ZhuandJ.Gao, (2025) “Path planning and optimization for transmission line barrier operations in complex terrain based on multimachine collaborative control" International Journal of Low Carbon Technologies 20: 36–46. DOI: 10.1093/ijlct/ctae254.
  26. [26] J. Feng, C. Rao, and J. Guo, (2023) “Optimal path planning for emergency inspection of large-scale transmission lines considering complex terrain" Proceedings of SPIE 12598(8): 581–587. DOI: 10.1117/12.2672916.
  27. [27] G. Nan, Z. Shen, H. Du, L. Yu, and W. Zhu, (2024) “Smart line planning method for power transmission based on D3QN-PER algorithm" IET Control Theory & Ap plications 18(17): 2256–2266. DOI: 10.1049/cth2.12689.
  28. [28] J. Vilela, B. Fanzeres, R. Martinelli, and R. Moreno, (2023) “A holistic methodology to identify cost-effective smooth routes for power transmission lines" IEEE Trans actions on Power Systems 38(4): 3540–3513. DOI: 10.1109/TPWRS.2022.3207666.
  29. [29] X. Xie, Z. Yan, Z. Zhang, Y. Qin, H. Jin, and M. Xu, (2024) “Hybrid genetic ant colony optimization algorithm for full-coverage path planning of gardening pruning robots" Intelligent Service Robotics 17(3): 661–683. DOI: 10.1007/s11370-024-00525-6.
  30. [30] K. Zhang, B. Chai, M. Tan, Y. Zhang, and J. Wang, (2024) “Enhanced ant colony algorithm with obstacle avoidance strategy for multi-objective path planning of mobile robots" Engineering Optimization 56(10/12): 1540–1560. DOI: 10.1080/0305215X.2023.2269844.
  31. [31] Y. Yao, A. J. Wang, and F. M. Shang, (2024) “Dynamic obstacle avoidance path planning method for autonomous driving based on quantum ant colony algorithm" Advances in Transportation Studies 12(S2): 29–40. DOI: 10.53136/97912218141253.
  32. [32] L. M. S. Bine, A. Boukerche, A. A. F. Loureiro, and L. B. Ruiz, (2023) “A novel ant colony-inspired coverage path planning for internet of drones" Computer Net works 235: 1.1–1.12. DOI: 10.1016/j.comnet.2023.109963.
  33. [33] S. Sha, Z. Xue, L. Qiang, et al., (2025) “Optimization of LED Chip Sorting Path Based on Hybrid Ant Colony Algorithm" Computer Simulation 42(01): 354–361. DOI: 10.1038/s41598-025-17625-.
  34. [34] M. Muzammul, M. Assam, Y. Y. Ghadi, N. Innab, M. Alajmi, and T. J. Alahmadi, (2024) “IR-QLA: Ma chine Learning-Based Q-Learning Algorithm Optimization for UAVs Faster Trajectory Planning by Instructed Reinforcement Learning" IEEE Access 12: 91300–91315. DOI: 10.1109/ACCESS.2024.3420169.
  35. [35] K. Zhang, B. Chai, M. Tan, Y. Zhang, and J. Wang, (2024) “Enhanced ant colony algorithm with obstacle avoidance strategy for multi-objective path planning of mobile robots" Engineering Optimization 56(10–12): 1540–1560. DOI: 10.1080/0305215X.2023.2269844.
  36. [36] Y. Li, Y. Pan, W. Yang, X. Xu, J. Xu, and L. Zhang, (2024) “A practical path planning method for optimal repair paths between multiple small-size defects" Rapid Prototyping Journal 30(10): 2089–2096. DOI: 10.1108/RPJ-03-2024-0110.
  37. [37] Q. Fu, X. Lan, F. Ren, and J. Wu, (2023) “Research on Route Planning Algorithm of Bidirectional Target RRT and Dijkstra" Computer Simulation 40(1): 447–454, 461.


    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.