Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

D. Rajamani This email address is being protected from spambots. You need JavaScript enabled to view it.1 and E. Balasubramanian1

1Centre for Autonomous System Research, Department of Mechanical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai - 600062, India


 

Received: January 14, 2019
Accepted: May 16, 2019
Publication Date: September 1, 2019

Download Citation: ||https://doi.org/10.6180/jase.201909_22(3).0001  

ABSTRACT


Selective heat sintering (SHS) process aims to produce near net shape components through sintering of specific region of powder particles. Evaluation of viscoelastic properties of SHS parts are of major importance to produce functional parts for diverse applications. The present study focuses on investigation of SHS governing parameters on loss modulus, storage modulus and damping factor of high density polyethylene (HDPE) specimens. SHS system is custom built and experiments are conducted based on four factors three level box-behnken design. The interaction among SHS process variables for examining the viscoelastic properties using response surface analysis is performed. Optimal SHS process variables are obtained using non-desirability statistical approach. Morphological examinations are conducted using scanning electron microscope (SEM) where in pull outs, voids and pores are observed in the sintered surfaces. The results revealed that at high heater energy (26.32 J/mm2) and low layer thickness (0.1 mm) with high heater feedrate (3.5 mm/sec) and printer feedrate (116.38 mm/min) is beneficial for improving viscoelastic properties of sintered specimens. These analyses provided an insightfor the fabrication of near netshape components with sufficientviscoelastic properties.


Keywords: Additive Manufacturing, Sintering, Optimization, Desirability, Viscoelastic Properties


REFERENCES


  1. [1] Khoshnevis, B., B. Asiabanpour, M. Mojdeh, and K. Palmer (2003) SIS–a new SFF method based on powder sintering, Rapid Prototyping Journal 9, 3036. doi: 10.1108/13552540310455638
  2. [2] Asiabanpour, B. (2003) An Experimental Study of Factors Affecting the Selective Inhibition of Sintering Process, PhD Thesis, University of Southern California, California, p. 168.
  3. [3] Baraskar, S. S., S. S. Banwait, and S. C. Laroiya (2013) Multi objective optimization of electrical discharge machining process using a hybrid method, Materials and Manufacturing Processes 28, 348354. doi: 10.1080/10426914.2012.700152
  4. [4] Sood, A. K., R. K. Ohdar, and S. S. Mahapatra (2009) Improving dimensional accuracy of fused deposition modelling processed parts using grey taguchi method, Materials and Design 30, 42434252. doi: 10.1016/ j.matdes.2009.04.030
  5. [5] Rajamani, D., E. Balasubramanian, P. Arunkumar, M. Silambarasan, and G. Bhuvaneshwaran (2018) Experimental investigations and parametric optimization of process parameters on shrinkage characteristics of selective inhibition sintered high density polyethylene parts, Experimental Techniques 42(6), 631644. doi: 10.1007/s40799-018-0286-6
  6. [6] Negi, S., S. Dhiman, and R. K. Sharma (2015) Determining the effect of sintering conditions on mechanical properties of laser sintered glass filled polyamide parts using RSM, Measurement 68, 205218. doi: 10. 1016/j.measurement.2015.02.057
  7. [7] Janaina, L. L., and G. V. Salmoria (2012) Microstructural characterization and mechanical properties of functionally graded PA12/HDPE parts by selective laser sintering, International Journal of Advanced Manufacturing Technology 59, 583591. doi: 10.1007/ s00170-011-3538-5
  8. [8] Sood, A. K., A. Equbal, V. Toppo, R. K. Ohdar, and S. S. Mahapatra (2012) An investigation on sliding wear of FDM built parts, CIRP Journal of Manufacturing Science and Technology 5, 4854. doi: 10.1016/j. cirpj.2011.08.003
  9. [9] Kumar, S. (2009) Sliding wear behavior of dedicated iron-based SLS materials, International Journal of Advanced Manufacturing Technology 43, 337347. doi: 10.1007/s00170-008-1714-z
  10. [10] Sachdeva, A., S. Singh, and V. S. Sharma (2013) Investigating surface roughness of parts produced by SLS process, International Journal of Advanced Manufacturing Technology 64, 15051516. doi: 10.1007/ s00170-012-4118-z
  11. [11] Anitha, R., S. Arunachalam, and P. Radhakrishnan (2001) Critical parameters influencing the quality of prototypes in fused deposition modelling, Journal of Materials Processing Technology 118, 385388. doi: 10.1016/S0924-0136(01)00980-3
  12. [12] Rajamani, D., A. Ziout, E. Balasubramanian, R. Velu, S. Salunkhe, and H. Mohamed (2018) Prediction and analysis of surface roughness in selective inhibition sintered high-density polyethylene parts: a parametric approach using response surface methodology–grey relational analysis, Advances in Mechanical Engineering 10(12). doi: 10.1177/16878 14018820994
  13. [13] Singh, V. S., S. Singh, A. Sachdeva, and P. Kumar (2015) Influence of sintering parameters on dynamic mechanical properties of selective laser sintered parts, International Journal of Materials Forming 8(1), 157 166. doi: 10.1007/s12289-013-1158-3
  14. [14] Negi, S., and R. K. Sharma (2015) Influence of processing variables on dynamic mechanical response of laser-sintered glass-filled polyamide, Materials and Manufacturing Processes 30, 14311441. doi: 10. 1080/10426914.2014.994778
  15. [15] Asiabanpour,B.,K.Palmer,and B.Khoshnevis (2004) An experimental study of surface quality and dimensional accuracy for selective inhibition of sintering, Rapid Prototyping Journal 10(3), 181192. doi: 10. 1108/13552540410539003
  16. [16] Asiabanpour, B., B. Khoshnevis, and K. Palmer (2006) Advancements in selective inhibition sintering process development, Virtual and Physical Prototyping 1(1), 4352. doi: 10.1080/17452750500289 910
  17. [17] Aravind, A., P. Arunkumar, and E. Balasubramanian (2017) Comparative study of high performance polymers in selective inhibition sintering process through finite element analysis, Journal of Polymers and Polymer Composites 25(3), 199202. doi: 10.1177/0967 39111702500303
  18. [18] Arunkumar, P., E. Balasubramanian, and U. Chandrasekhar (2017) Investigation on multi-layer selective inhibition sintering process using finite element analysis, Materials Today Proceedings 4(2), 24392444. doi: 10.1016/j.matpr.2017.02.095
  19. [19] Rajamani, D., and E. Balasubramanian (2017) Examining mechanical strength characteristics of selective inhibition sintered HDPE specimens using RSM and desirabilityapproach,IOPConferenceSeries:Materials Science and Engineering, 234, 012002. doi: 10.1088/ 1757-899X/234/1/012002
  20. [20] Balasubramanian, E., D. Rajamani, and P. Arunkumar (2018) Modeling and prediction of optimalprocess parameters in wear behaviour of selective inhibition sintered high density polyethylene parts, Progress in Additive Manufacturing 3(3), 109121. doi: 10.1007/ s40964-017-0033-z
  21. [21] Ananthakumar, K., D. Rajamani, E. Balasubramanian, and J. Paulo Davim (2019) Measurement and optimization of multi-response characteristics in plasma arc cuttingofMonel400TM using RSMandTOPSIS, Measurement 135, 725737. doi: 10.1016/j.measurement. 2018.12.010
  22. [22] Ogorkiewicz, R. M. (1970) Engineering Properties of Thermoplastics, Wiley & Sons Ltd.
  23. [23] Tamilarasan, A., and D. Rajamani (2017) Multi-response optimization of Nd: YAG laser cutting parameters of Ti-6Al-4V superalloy sheet, Journal of Mechanical Science and Technology 31(2), 813821. doi: 10.1007/s12206-017-0133-1
  24. [24] Rajamani, D., K. Ananthakumar, E. Balasubramanian, and J. Paulo Davim (2018) Experimental investigation and optimization of PAC parameters on Monel 400TM superalloy, Materials and Manufacturing Processes 33(16), 18641873. doi: 10.1080/10426914.2018. 1532085