Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Yuanyuan Gao1,2 and Jin-whan Kim1This email address is being protected from spambots. You need JavaScript enabled to view it.

1Department of Computer and Information Engineering, Youngsan University Yangsan-si(50510), Gyeongsangnam-do, Republic of Korea

2Teaching Quality Assurance and Evaluation Center, Liaodong University Dandong 118001 China


 

 

Received: October 22, 2024
Accepted: November 20, 2024
Publication Date: December 28, 2024

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202509_28(9).0009  


As sensitive data, medical data is easy to be leaked or maliciously altered to form medical disputes. The high dimensional information of medical data can easily lead to "dimensional disaster". In order to avoid the impact of information attributes on privacy protection and improve the security of personal information, this paper proposes a medical data privacy protection method based on blockchain asymmetric encryption algorithm and generative adversarial network. The improved kernel principal component analysis method is used to reduce the dimension of personal information, reduce the information attribute dimension, and input the personal information after dimensionality reduction into the cyclic consistency generative adversarial network to eliminate the noise data in the information. In the blockchain environment, asymmetric encryption algorithms are used to generate private keys and public keys to encrypt user privacy data. Comprehensive user information, user behavior and user upload public key, evaluate user identity trust, and finally realize user privacy protection through user identity authentication and private data access process control. The experimental results show that the proposed method has high efficiency, good fault tolerance and can effectively protect the security of patients’ personal information.


Keywords: medical data privacy protection, blockchain asymmetric encryption algorithm, generative adversarial network, kernel principal component analysis


  1. [1] E. Rodriguez, B. Otero, and R. Canal, (2023) “A sur vey of machine and deep learning methods for privacy protection in the internet of things" Sensors 23(3): 1252. DOI: 10.3390/s23031252.
  2. [2] A. Brauneck, L. Schmalhorst, M. M. Kazemi Majd abadi, M. Bakhtiari, U. Völker, J. Baumbach, L. Baum bach, and G. Buchholtz, (2023) “Federated machine learning, privacy-enhancing technologies, and data pro tection laws in medical research: scoping review" Jour nal of Medical Internet Research 25: e41588. DOI: 10.2196/41588.
  3. [3] Y. Wang and L. Sun, (2024) “Privacy Protection of Secure Sharing Electronic Health Records Based on Blockchain." International Journal of Advanced Computer Science & Applications 15(7): DOI: 10.14569/IJACSA.2024.0150791.
  4. [4] S. Yin, H. Li, A. A. Laghari, T. R. Gadekallu, G. A. Sampedro, and A. Almadhor, (2024) “An anomaly detection model based on deep auto-encoder and capsule graph convolution via sparrow search algorithm in 6G internet-of-everything" IEEE Internet of Things Jour nal 11(18): 29402–29411. DOI: 10.1109/JIOT.2024.3353337.
  5. [5] M. Al-Hawawreh and M. S. Hossain, (2023) “A privacy-aware framework for detecting cyber attacks on internet of medical things systems using data fusion and quantum deep learning" Information Fusion 99: 101889. DOI: 10.1016/j.inffus.2023.101889.
  6. [6] H. B. Mahajan and A. A. Junnarkar, (2023) “Smart healthcare system using integrated and lightweight ECC with private blockchain for multimedia medical data pro cessing" Multimedia Tools and Applications 82(28): 44335–44358. DOI: 10.1007/s11042-023-15204-4.
  7. [7] J.Miao,Z.Wang,Z.Wu,X.Ning,andP.Tiwari,(2024) “A blockchain-enabled privacy-preserving authentication management protocol for Internet of Medical Things" Expert Systems with Applications 237: 121329. DOI: 10.1016/j.eswa.2023.121329.
  8. [8] R.Praveen and P. Pabitha, (2023) “Improved Gentry Halevi’s fully homomorphic encryption-based lightweight privacy preserving scheme for securing medical Internet of Things" Transactions on Emerging Telecommuni cations Technologies 34(4): e4732. DOI: 10.1002/ett.4732.
  9. [9] S. Yin, H. Li, L. Teng, A. A. Laghari, and V. V. Estrela, (2024) “Attribute-based multiparty searchable encryption model for privacy protection of text data" Multimedia Tools and Applications 83(15): 45881–45902. DOI: 10.1007/s11042-023-16818-4.
  10. [10] G.Zyskind,O.Nathan,etal.“Decentralizingprivacy: Using blockchain to protect personal data”. In: 2015 IEEE security and privacy workshops. IEEE. 2015, 180 184. DOI: 10.1109/SPW.2015.27.
  11. [11] Z. Xue, M. Wang, Q. Zhang, Y. Zhang, and P. Liu, (2021) “A regulatable blockchain transaction model with privacy protection" International Journal of Compu tational Intelligence Systems 14(1): 1642–1652. DOI: 10.2991/ijcis.d.210528.001.
  12. [12] S. Gao, Q. Su, R. Zhang, J. Zhu, Z. Sui, and J. Wang, (2021) “A Privacy-Preserving Identity Authentication Scheme Based on the Blockchain" Security and Commu nication Networks 2021(1): 9992353. DOI: 10.1155/2021/9992353.
  13. [13] W. Liang, Y. Yang, C. Yang, Y. Hu, S. Xie, K.-C. Li, andJ. Cao, (2022) “PDPChain: Aconsortium blockchain based privacy protection scheme for personal data" IEEE Transactions on Reliability 72(2): 586–598. DOI: 10.1109/TR.2022.3190932.
  14. [14] B. Faber, G. Michelet, N. Weidmann, R. R. Mukka mala, and R. Vatrapu. “BPDIMS: A blockchain-based personal data and identity management system”. In: The 52nd Hawaii International Conference on System Sci ences. HISS 2019: HISS 2019. Hawaii International Conference on System Sciences (HICSS). 2019, 6855 6864. DOI: 10125/60121.
  15. [15] Z. Lu, Q. Wang, G. Qu, H. Zhang, and Z. Liu, (2019) “A blockchain-based privacy-preserving authentication scheme for VANETs" IEEE Transactions on Very Large Scale Integration (VLSI) Systems 27(12): 2792–2801. DOI: 10.1109/TVLSI.2019.2929420.
  16. [16] J. Khan, S. Bhuiyan, G. Murphy, and J. Williams, (2016) “Data denoising and compression for smart grid communication" IEEE Transactions on signal and in formation processing over networks 2(2): 200–214. DOI: 10.1109/TSIPN.2016.2539680.
  17. [17] L. Teng, Y. Qiao, and S. Yin, (2024) “Underwater im age denoising based on curved wave filtering and two dimensional variational mode decomposition" Computer Science and Information Systems 21(4): 1765–1781. DOI: 10.2298/CSIS240314057T.
  18. [18] X. Yi, E. Walia, and P. Babyn, (2019) “Generative adver sarial network in medical imaging: A review" Medical image analysis 58: 101552. DOI: 10.1016/j.media.2019.101552.
  19. [19] L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein, (2016) “Unrolled generative adversarial networks" arXiv preprint arXiv:1611.02163:
  20. [20] H. Liu, X. Luo, H. Liu, and X. Xia. “Merkle tree: A fundamental component of blockchains”. In: 2021 International Conference on Electronic Information En gineering and Computer Science (EIECS). IEEE. 2021, 556–561. DOI: 10.1109/EIECS53707.2021.9588047.
  21. [21] J. Xu, L. Wei, Y. Zhang, A. Wang, F. Zhou, and C.-z. Gao, (2018) “Dynamic fully homomorphic encryption based merkle tree for lightweight streaming authenticated data structures" Journal of Network and Computer Applications 107: 113–124. DOI: 10.1016/j.jnca.2018. 01.014.
  22. [22] H. Zhu, Y. Guo, and L. Zhang, (2021) “An improved convolution Merkle tree-based blockchain electronic medi cal record secure storage scheme" Journal of Informa tion Security and Applications 61: 102952. DOI: 10.1016/j.jisa.2021.102952.
  23. [23] O. Kuznetsov, A. Rusnak, A. Yezhov, K. Kuznetsova, D. Kanonik, and O. Domin, (2024) “Evaluating the security of Merkle trees: An analysis of data falsification probabilities" Cryptography 8(3): 33. DOI: 10.3390/ cryptography8030033.
  24. [24] X. Zhang, H. Zhong, J. Cui, I. Bolodurina, and L. Liu, (2022) “Lbvp: a lightweight batch verification protocol for fog-based vehicular networks using self-certified public key cryptography" IEEE Transactions on Vehicular Technology 71(5): 5519–5533. DOI: 10.1109/TVT.2022. 3157960.
  25. [25] M. Li, Z. Tian, X. Du, X. Yuan, C. Shan, and M. Guizani, (2023) “Power normalized cepstral robust fea tures of deep neural networks in a cloud computing data privacy protection scheme" Neurocomputing 518: 165 173. DOI: 10.1016/j.neucom.2022.11.001.
  26. [26] X. Li, H. Zhao, and W. Deng, (2023) “BFOD: Blockchain-based privacy protection and security shar ing scheme of flight operation data" IEEE Internet of Things Journal: DOI: 10.1109/JIOT.2023.3296460.
  27. [27] Y. Hu, Y. Zhang, X. Gao, D. Gong, X. Song, Y. Guo, and J. Wang, (2023) “A federated feature selection algo rithm based on particle swarm optimization under privacy protection" Knowledge-Based Systems 260: 110122. DOI: 10.1016/j.knosys.2022.110122.


    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.