Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

JIA Jinzhang1,2, Wang Yixing1,2This email address is being protected from spambots. You need JavaScript enabled to view it., JIA Peng1,2,3, and Che Defu4

1College of Safety Science and Engineering, Liaoning Technical University, Huludao 125105, China

2Key Laboratory of Mine Thermodynamic disasters and Control of Ministry of Education, Huludao 125105, China

3Ordos Institute of Liaoning Technical University, Ordos 017010, China

4School of Resources and Civil Engineering, Northeastern University


 

Received: September 24, 2025
Accepted: December 10, 2025
Publication Date: January 25, 2026

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202607_30.039  


Accurate prediction of coal mine gas emission is crucial for disaster prevention, yet challenging due to complex, non-stationary data and traditional models’ tendency to converge to local optima. The present study proposes a novel SHSCOA-BiLSTM model, which integrates an enhanced chimpanzee optimisation algorithm to optimise a bidirectional long short-term memory network. The methodology employs data imputation, principal component analysis, and enhanced global search strategies to tune critical hyperparameters. The model has been validated on real-world data, and it has been demonstrated to significantly outperform existing benchmarks, with a reduction in mean absolute percentage error of 57.18−74.10% and mean squared error of 80.16−92.35%. The findings indicate that the SHSCOA-BiLSTM model offers a highly accurate and robust instrument for gas emission forecasting, providing a reliable scientific foundation for early warning systems that can significantly enhance proactive safety management and prevent gas-related disasters in coal mines.


Keywords: mine gas outflow prediction, bi-directional long and short-term memory network, chimpanzee optimisation algorithm, hyperparameter optimization, principal component analysis


  1. [1] Y. Wu, M. Chen, K. Wang, and G. Fu, (2019) “A dynamic information platform for underground coal mine safety based on internet of things" Safety Science 113: 9–18. DOI: 10.1016/j.ssci.2018.11.003.
  2. [2] F. Wang, P. Zhang, B. Cui, Z. Sun, and K. Zhang, (2021) “Research progress of disaster factors and a prevention alarm index of coal and gas outbursts" Arabian Journal of Geosciences 14: 2042. DOI: 10.1007/s12517-021-07540-2.
  3. [3] M. Petkovic, Y. Chen, I. Gamrath, U. Gotzes, N. S. Hadjidimitrou, J. Zittel, X. Xu, and T. Koch, (2022) “A hybrid approach for high precision prediction of gas flows" Energy Systems 13: 383–408. DOI: 10.1007/s12667-021-00466-4.
  4. [4] S. Li, M. You, D. Li, and J. Liu, (2022) “Identifying coal mine safety production risk factors by employing text mining and Bayesian network techniques" Process safety and environmental protection 162: 1067–1081. DOI: 10.1016/j.psep.2022.04.054.
  5. [5] X. Li, Z. Cao, and Y. Xu, (2025) “Characteristics and trends of coal mine safety development" Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 47: 2316–2334. DOI: 10.1080/15567036.2020. 1852339.
  6. [6] C. Zhang, P. Wang, E. Wang, D. Chen, and C. Li, (2023) “Characteristics of coal resources in China and statistical analysis and preventive measures for coal mine accidents" International journal of coal science & technology 10: 22. DOI: 10.1007/s40789-023-00582-9.
  7. [7] M.S.K.Al-MarsomiaandF.M.S.Al-Zwainya,(2023) “Journal of Project Management" Journal of Project Management 8: 119–132. DOI: 10.5267/J.JPM.2022.11.002.
  8. [8] S. H. R. Aldhamad, R. Maya, S. F. M. Alazawy, and F. M. Alzwainy, (2024) “Forecasting models for time and cost performance predicting of infrastructural projects" Civil andEnvironmentalEngineering20:1024–1039. DOI: 10.2478/cee-2024-0074.
  9. [9] F. Al-Zwainy, M. G. Al-khazrajy, N. M. Hussein, S. Mohamed, M. M. Sarhan, T. J. Al-Musawi, and G. Hayder, (2024) “Utilizing Artificial Neural Networks for Predictive KPI Analysis in Bridge Projects." Journal of Computational Analysis & Applications 33:
  10. [10] L. L. W. Lunarzewski, (1998) “Gas emission prediction and recovery in underground coal mines" International Journal of Coal Geology 35: 117–145. DOI: 10.1016/S0166-5162(97)00007-4.
  11. [11] W.DongandD.Hong.“Analysis the Influence Fac tors and Deviation of Gas Outflow in Resumed Mine”. In: IOP Conference Series: Earth and Environ mental Science. 474. IOP Publishing. 2020, 042031. DOI: 10.1088/1755-1315/474/4/042031.
  12. [12] L. Qiu, Y. Peng, and D. Song, (2022) “Risk prediction of coal and gas outburst based on abnormal gas concentration in blasting driving face" Geofluids 2022: 3917846. DOI: 10.1155/2022/3917846.
  13. [13] C.Ö.Karacan, (2009) “Forecasting gob gas venthole pro duction performances using intelligent computing methods for optimum methane control in longwall coal mines" International Journal of Coal Geology 79: 131–144. DOI: 10.1016/j.coal.2009.07.005.
  14. [14] M. Tutak and Krenicky, (2024) “Predicting methane concentrations in underground coal mining using a multi layer perceptron neural network based on mine gas monitoring data" Sustainability 16: 8388. DOI: 10.3390/su16198388.
  15. [15] F. M. Al-Zwainy, S. A. Salih, M. R. Aldikheeli, et al., (2021) “Prediction of residual strength of sustainable self-consolidating concrete exposed to elevated temperature using artificial intelligent technique" International Journal of Applied Science and Engineering 18: 1 15. DOI: 10.6703/IJASE.202106_18(2).012.
  16. [16] J. A. Al-Somaydaii, A. T. Albadri, and F. M. Al Zwainy, (2024) “Hybrid approach for cost estimation of sustainable building projects using artificial neural net works" OpenEngineering14:20220485. DOI:10.1515/eng-2022-0485.
  17. [17] D. Dong, (2012) “Mine gas emission prediction based on Gaussian process model" Procedia Engineering 45: 334–338. DOI: 10.1016/j.proeng.2012.08.167.
  18. [18] S. Bi, L. Shao, Z. Qi, Y. Wang, and W. Lai, (2023) “Pre diction of coal mine gas emission based on hybrid machine learning model" Earth Science Informatics 16: 501 513. DOI: 10.1007/s12145-022-00894-5.
  19. [19] L. Ma, C. Huang, Z.-S. Liu, K. A. Morin, M. Aziz, and C. Meints, (2020) “Artificial neural network for prediction of full-scale seepage flow rate at the equity silver mine" Water, Air 231: 179. DOI: 10.1007/s11270-020-04541-x.
  20. [20] Y. Li, Q. Wu, and F. Lei, (2025) “Mine Water Inflow Prediction Using a CEEMDAN-OVMD-Transformer Model" Applied Sciences 15: 9710. DOI: 10.3390/app15179710.
  21. [21] Q.Zheng,C.Li,B.Yang,Z.Yan,andZ.Qin,(2025)“A Method for Predicting Coal-Mine Methane Outburst Volumes and Detecting Anomalies Based on a Fusion Model of Second-Order Decomposition and ETO-TSMixer" Sensors 25: 3314. DOI: 10.3390/s25113314.
  22. [22] S. Rathnayake, A. Rajora, and M. Firouzi, (2022) “A machine learning-based predictive model for real-time monitoring of flowing bottom-hole pressure of gas wells" Fuel 317: 123524. DOI: 10.1016/j.fuel.2022.123524.
  23. [23] A. S. Hati, P. Kumar, et al., (2023) “An adaptive neural fuzzy interface structure optimisation for prediction of energy consumption and airflow of a ventilation system" Applied Energy 337: 120879. DOI: 10.1016/j.apenergy.2023.120879.
  24. [24] Y. Wang, Y. Si, B. Huang, and Z. Lou, (2018) “Survey on the theoretical research and engineering applications of multivariate statistics process monitoring algorithms: 2008-2017" The Canadian Journal of Chemical Engineering 96: 2073–2085. DOI: 10.1002/cjce.23249.
  25. [25] S. Rathnayake, A. Rajora, and M. Firouzi, (2022) “A machine learning-based predictive model for real-time monitoring of flowing bottom-hole pressure of gas wells" Fuel 317: 123524. DOI: 10.1016/j.fuel.2022.123524.
  26. [26] S.-H. Wu, Y.-C. Zhu, Z.-H. Pan, and H. Di, (2025) “An efficient Expectation-Maximization algorithm for Bayesian operational modal analysis with physics-data fusion model" Mechanical Systems and Signal Processing 237: DOI: 10.1016/j.ymssp.2025.113144.
  27. [27] Y. Li and S. A. Vorobyov, (2017) “Fast algorithms for designing unimodular waveform (s) with good correlation properties" IEEE Transactions on Signal Processing 66: 1197–1212. DOI: 10.1109/TSP.2017.2787104.
  28. [28] S. Yang, Y. Tian, C. He, X. Zhang, K. C. Tan, and Y. Jin, (2021) “A gradient-guided evolutionary approach to training deep neural networks" IEEE Transactions on Neural Networks and Learning Systems 33: 48614875. DOI: 10.1109/TNNLS.2021.3061630.
  29. [29] H. K. Risan, F. M. Serhan, and A. A. Al-Azzawi. “Management of a typical experiment in engineer ing and science”. In: AIP Conference Proceedings. 2864. AIP Publishing LLC. 2024, 050001. DOI: 10.1063/5. 0186079.
  30. [30] F. Al-Zwainy, E. K. Abdalkarim, W. K. Majeed, E. S. Huseen, and H. S. Jari, (2024) “Development Artificial Neural Network (ANN) computing model to analyses men’s 100-meter sprint performance trends." Fizjoterapia Polska (2): DOI: 10.56984/8ZG5608M3Q.
  31. [31] A. Sherstinsky, (2020) “Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network" Physica D: Nonlinear Phenomena 404: 132306. DOI: 10.1016/j.physd.2019.132306.
  32. [32] H. Jia, K. Sun, W. Zhang, and X. Leng, (2022) “An enhanced chimp optimization algorithm for continuous optimization domains" Complex & Intelligent Systems 8: 65–82. DOI: 10.1007/s40747-021-00346-5.
  33. [33] M. Naser, M. K. Al-Bashiti, A. T. G. Tapeh, A. Naser, V. Kodur, R. Hawileh, J. Abdalla, N. Khodadadi, A. H. Gandomi, and A. D. Eslamlou, (2025) “A review of benchmark and test functions for global optimization algorithms and metaheuristics" Wiley Interdisciplinary Reviews: Computational Statistics 17: e70028. DOI: 10.1002/wics.70028.


    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.