Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Feng Wei1 , Zhou Shuai1, Sun Xiaokang1, and Lu Wenzhuang2

1School of Mechanical Engineering, Yancheng Institute of technology, Yancheng 224001, P.R.China

2Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China


 

Received: October 2, 2025
Accepted: January 5, 2026
Publication Date: February 1, 2026

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202608_31.008  


Three diamond film tools with controllable texture were fabricated prepared by chemical vapor deposition (CVD) method. Their surface quality was analysed, and the tools were innovatively used to lap sapphire fairing. The effects of the lapping pressure, type of the lapping fluid and tool, and lapping time on the roughness and material removal rate of the sapphire fairing were investigated. The surface morphology and quality of the tool were analysed by SEM and XPS to explain the reason why ethylenediamine was used as the lapping fluid with the highest removal rate. The lapped sapphire fairing surfaces were analysed. The results showed that the surfaces were relatively smooth and bright, with only a few scratches. The removal rate of this processing method reached up to 38.6µ m/min. The surface roughness of the sapphire fairing after machining was 0.25−0.6µ m. The spherical error of the ball surface measured by the three-coordinate was 1.616µ m. The proposed high-quality machining method is efficient for lapping sapphire fairing. It provides a process reference for spherical and curved surface machining of similar crystalline materials.


Keywords: CVD; sapphire fairing; diamond film; lapping


  1. [1] R.Makarewicz, (2025) “Double Sonic Boom of an Aerial Bomb and a Ballistic Missile" Applied Acoustics 235: 110675. DOI: 10.1016/j.apacoust.2025.110675.
  2. [2] S. Trimble. U.S. Navy Reveals Plans to Develop MACE Missile for F-35, F/A-18E/F. Aerospace Daily & Defense Report. 6, 2024. URL:  https://aviationweek.com/defense/missile-defense-weapons/us-navy-reveals-plans-develop-mace-missile-f-35-fa-18ef.
  3. [3] Q.Huang,Y.Q.Chen,Z.F.Gao,andX.F.Zhai,(2009) “Consideration to Radome Technology for IR Seeker" Journal of Applied Optics 30(5): 840–843. DOI: 10.3969/j.issn.1002-2082.2009.05.027.
  4. [4] Y. Xu, C. Peng, Y. Zhan, and Q. Wang, (2024) “Machining Performance and Material Removal Mechanism of Sapphire with Novel Polishing Slurry" Applied Sur face Science 671: 160756. DOI: 10.1016/j.apsusc.2024.160756.
  5. [5] S. Saurabh, U. R. Nallasani, T. C. Huang, C. Y. Lin, Y. C. Li, Y. H. Wu, C. Y. Lee, B. Y. Chen, G. C. Yin, M.T.Tang,W.C.Chou,andB.H.Lin,(2025)“Probing the peculiar emission behaviors of c-Sapphire wafer and β-Ga2O3/c-Sapphire via hard X-ray nanoprobe" Optical Materials 163: 116975. DOI: 10.1016/j.optmat.2025.116975.
  6. [6] D. C. Harris. “A Peek into the History of Sapphire Crystal Growth”. In: AeroSense 2003. Ed. by R. W. Tustison. 5078. Orlando, FL, USA: SPIE, 25, 2003, 1 11. DOI: 10.1117/12.501428.
  7. [7] G. Wang, H. Zuo, H. Zhang, Q. Wu, M. Zhang, X. He, Z. Hu, and L. Zhu, (2010) “Preparation, Quality Characterization, Service Performance Evaluation and Its Modification of Sapphire Crystal for Optical Window and Dome Application" Materials & Design 31(2): 706–711. DOI: 10.1016/j.matdes.2009.08.015.
  8. [8] F. Schmid and C. P. Khattak. “Current Status of Sapphire Technology for Window and Dome Applica tions”. In: SPIE 1989 Technical Symposium on Aerospace Sensing. Ed. by P. Klocek. 1112. Orlando, FL, USA: SPIE, 11, 1989, 25–30. DOI: 10.1117/12.960760.
  9. [9] A.Horowitz, S. Biderman, D. Gazit, Y. Einav, G. Ben Amar, and M. Weiss, (1993) “The Growth of Dome Shaped Sapphire Crystals by the Gradient Solidification Method (GSM)" Journal of Crystal Growth 128(1–4): 824–828. DOI: 10.1016/S0022-0248(07)80052-2.
  10. [10] R. A. Trasca, M. Sistaninia, G. Reiss, W. Eßl, P. Raninger, and S. Lohrasbi, (2024) “Coupled Thermal Solidification Process Simulation of Sapphire Growth" Integrating Materials and Manufacturing Innovation 13(1): 1–13. DOI: 10.1007/s40192-023-00321-7.
  11. [11] A. Vorob’ev, V. Kalaev, and K. Mazaev, (2023) “Chemical Model of Sapphire Crystal Growth by Ky Technique" Journal of Crystal Growth 612: 127196. DOI: 10.1016/j.jcrysgro.2023.127196.
  12. [12] J. Seo, T. Kim, and H. Lee, (2018) “Effect of Free Abrasives on Material Removal in Lap Grinding of Sapphire Substrate" Tribology and Lubricants 34(6): 209–216. DOI: 10.9725/kts.2018.34.6.209.
  13. [13] S. Huang, X. Li, Y. Zhao, Q. Sun, and H. Huang,(2021) “A Novel Lapping Process for Single-Crystal Sapphire Using Hybrid Nanoparticle Suspensions" International Journal of Mechanical Sciences 191(1): 106099. DOI: 10.1016/j.ijmecsci.2020.106099.
  14. [14] Q. Xiong, X. Nie, J. Lu, Q. Yan, and J. Deng, (2022) “Processing Performance of Vitrified Bonded Fixed Abrasive Lapping Plates for Sapphire Wafers" The International Journal of Advanced Manufacturing Technology 123(5): 1945–1955. DOI: 10.1007/s00170-022-10294-0.
  15. [15] Z. Li, Z. Deng, J. Ge, T. Liu, and L. Wan, (2022) “Experimental and Theoretical Analysis of Single-Sided and Double-Sided Chemical Mechanical Polishing of Sapphire Wafers" The International Journal of Advanced Manufacturing Technology 119(7–8): 5095 5106. DOI: 10.1007/s00170-021-08404-5.
  16. [16] H. M. Kim, G. H. Park, Y. G. Seo, D. J. Moon, B. J. Cho, and J. G. Park, (2015) “Comparison between Sapphire Lapping Processes Using 2-Body and 3-Body Modes as a Function of Diamond Abrasive Size" Wear 332–333: 794–799. DOI: 10.1016/j.wear.2015.02.029.
  17. [17] J. C. Arnault, S. Saada, and V. Ralchenko, (2022) “Chemical Vapor Deposition Single-Crystal Diamond: A Review" Physica Status Solidi (RRL)– Rapid Re search Letters 16(1): 2100354. DOI: 10.1002/pssr. 202100354.
  18. [18] K. W. Hemawan, C. S. Yan, Q. Liang, J. Lai, Y. Meng, S. Krasnicki, H. K. Mao, and R. J. Hemley, (2011) “Hot Spot Formation in Microwave Plasma CVD Diamond Synthesis" IEEE Transactions on Plasma Science 39(11): 2790–2791. DOI: 10.1109/TPS.2011.2157531.
  19. [19] D. M.Gruen, (1999) “Nanocrystalline Diamond Films" Annual Review of Materials Science 29(1): 211–259. DOI: 10.1146/annurev.matsci.29.1.211.
  20. [20] K. Subramanian, W. Kang, J. Davidson, and W. Hofmeister, (2005) “The Effect of Growth Rate Control on the Morphology of Nanocrystalline Diamond" Diamond and Related Materials 14(3–7): 404–410. DOI: 10.1016/j.diamond.2005.01.027.
  21. [21] A. T. Salkazanov, M. O. Smirnova, S. A. Tarelkin, A. S. Gusev, T. E. Drozdova, M. M. Kaloshin, N. I. Kargin, N. V. Kornilov, and A. P. Nizovtsev, (2023) “Investigation of Isotopic Composition and Purity of 13C-enriched CVD-diamond Layers by Raman Spectroscopy and Photo luminescence" Journal of AppliedSpectroscopy89(6): 1059–1063. DOI: 10.1007/s10812-023-01466-1.
  22. [22] J. Chen, P. Ji, Y. Yang, C. Jin, L. Zhuge, and X. Wu, (2021) “Effect of DC Negative Bias on Structure and Properties of Nitrogen Doped Diamond-like Carbon Films Synthesized by HWP-CVD Technique" Diamond and Related Materials 112: 108243. DOI: 10.1016/j.diamond.2021.108243.
  23. [23] T. Pan, Y. Li, Q. Yang, D. Korotin, E. Kurmaev, M. Sanchez-Pasten, I. Zhidkov, and S. Cholakh, (2018) “DiamondDeposition on Fe-Cr-Al Alloy Substrates: Effect of Native Oxidation by XPS and XAS Investigation" Journal of Alloys and Compounds 740:887–894. DOI: 10.1016/j.jallcom.2018.01.096.
  24. [24] J. Shammas, Y. Yang, X. Wang, F. A. M. Koeck, M. R. McCartney, D. J. Smith, and R. J. Nemanich, (2017) “Band Offsets of Epitaxial Cubic Boron Nitride Deposited on Polycrystalline Diamond via Plasma-Enhanced Chemical Vapor Deposition" Applied Physics Letters 111(17): 171604. DOI: 10.1063/1.5009089.
  25. [25] H. K. Liu, C. C. A. Chen, and W. C. Chen, (2020) “Effects of Compound Diamond Slurry with Graphene for Lapping of Sapphire Wafers" The International Journal of AdvancedManufacturingTechnology106(11–12): 4755–4768. DOI: 10.1007/s00170-020-04951-5.
  26. [26] J. Wang, K. Wu, T. Maezaki, L. Zhou, T. Onuki, J. Shimizu, and Y. Zhu, (2020) “Development of Binder Free CMG Abrasive Pellet and Finishing Performance on Mono-Crystal Sapphire" Precision Engineering 62: 40–46. DOI: 10.1016/j.precisioneng.2019.11.004.
  27. [27] B. Luo, Q. Yan, J. Pan, J. Lu, and Z. Huang, (2021) “Influences of Processing Parameters on Metal-Bonded Diamond Wheel Wear When Grinding a Sapphire Wafer" Diamond and Related Materials 113: 108275. DOI: 10.1016/j.diamond.2021.108275.
  28. [28] W. Wang, Y. Yu, Z. Hu, C. Fang, J. Lu, and X. Xu, (2020) “Removal Characteristics of Sapphire Lapping Using Composite Plates with Consciously Patterned Resinoid-Bonded Semifixed Diamond Grits" Crystals 10(4): 293. DOI: 10.3390/cryst10040293.


    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.